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RAZNI NAQINI RJEXAVA�A

JEDNOG TE ISTOG MATEMATIQKOG ZADATKA

Prije nekoliko godina jedan je savjetnik za nastavu matematike na skupu
profesora matematike sred�ih xkola uzviknuo� ��Dosta je bilo zadataka� S
tim treba prestati� U nastavi se mora uqiti matematiqka teorija�� Ova iz�
java savjetnika je u priliqnoj mjeri iznenadila i donekle xokirala prisutne
nastavnike� Pogotovo drugi dio izjave u kojem je savjetnik zbirke zadataka
proglasio neobaveznom literaturom i takore�i izriqito zabranio prisutnim
profesorima da zahtjevaju od svojih uqenika da ih nabave�

Oqigledno� u ovom sluqaju je ispo	eno veliko nerazumjeva�e uloge i znaqa�
ja zadataka u nastavi matematike sred�oxkolskog nivoa� Uloga matematiqkih
zadataka pri realizaciji svih onih ci	eva datih u nastavnim programima je
izuzetno va
na� Naravno i ovdje� kao i uvijek� treba voditi raquna o mjeri�
Mnogo zadataka bez jasne svrhe ili texkih bez potrebne postupnosti jesu pro�
maxaji i to uk	uqujemo u loxu nastavu�

Ne postoji strogo pravilo kako treba uqiti matematiku� Uqenik uqi onako
kako se �emu qini da je najefikasnije� Svaki uqenik je liqnost sa specifiqnim
individualnim osobinama� Me�utim� postoje neke iskustveno provjerene metode
uqe�a ovog predmeta� Prvo se uqi matematiqka teorija� upoznaju se definicije
i aksiome� zatim se prouqavaju i dokazuju teoreme� Poslije toga se rjexavaju
zadaci� Ako uspjexno rjexavamo zadatke� onda smo savladali teoriju� ako imamo
potexko�a pri rjexava�u zadataka� onda ponovo teme	itije prouqavamo teoriju�
Matematiqka teorija i rjexava�e zadataka su u korelacionoj vezi�

Za uspjexno rjexava�e zadataka iz matematike treba se pridr
avati isku�
stvenih qi�enica� Ovdje bih citirao rijeqi quvenog ameriqkog matematiqara i
metodiqara �ma�arskog porijekla
 George�a Polya�e koje je on izrekao prije sko�
ro pola vijeka� ��Korisnije je jedan zadatak rijexiti samostalno� nego stotinu
rijexenih zadatak reprodukovati� Bo	e je jedan matematiqki zadatak rijexiti
na vixe naqina� razliqitim metodama� nego mnoxtvo zadataka rijexiti istom
metodom��

Najbo	a motivacija uqenicima da rjexavaju zadatke bi�e svakako uspjeh
pri rjexava�u problemskih zadataka� Ako uqenik uspije samostalno rjexiti
zadatak koji mu je bio te
ak� osjeti�e zadovo	stvo i posegnuti za novim zada�
tkom u 
e	i da ponovi taj uspjeh�
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U drugom dijelu ovog qlanka da�emo vixe raznih rjexe�a jednog zadatka iz
oblasti algebarskih nejednakosti imaju�i u vidu znaqaj gore citiranih rijeqi
velikog George�a Polya�e�

Rijeq je o s	ede�em zadatku�
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Napomena� Nejednakost ��
 se lako
mo
e dokazati pomo�u matematiqke induk�
cije� a onda koristiti za dokaz date neje�
dnakosti kao u prethodnom dokazu�
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