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O POBO�XA�U JEDNE NEJEDNAKOSTI

Prilikom dokaziva�a teoreme o konvergenciji niza qiji je opxti qlan

an �

�
� �

�

n

�n
� n � N

dokazuje se da je ovaj niz rastu�i i ograniqen odozgo� Dokazuje se da va�i

��� � � an � ��

ili

��� � � an � ��

Oqigledno� nejednakost ��� je bo	a �jaqa� od nejednakosti �
�� Ovdje �emo doka�
zati obje nejednakosti �
� i ���� ali �emo dokazati jox bo	u �jaqu� nejednakost�
koja glasi
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k � �

n
� � za sve k � �� �� 
 
 
 � n�

Vrijedi an � � samo za n � �� Dakle� vrijedi an � � za sve n � N�

Doka�imo sada da je an � �� n � N� Ovdje �emo koristiti poznatu nejedna�
kost Bernulija �Jacob Bernoulli� ��
���	�
� xvajcarski matematiqar holandskog
porijekla� koja glasi
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gdje je x � R� x � ��� � � Q� � � �� Jednakost u �
� vrijedi u sluqaju kada je
x � � ili kada je � � �� Ovdje ne�emo dokazivati nejednakost �
�� taj dokaz se
mo�e na�i u odgovaraju�oj literaturi o nejednakostima� npr� ����
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Koriste�i obrazac za sumu qlanova geometrijskog niza imamo da je zbir na

desnoj strani posled�e nejednakosti jednak ����
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� xto je oqigledno ma�e

od �� pa je i an � �� xto je i trebalo dokazati�
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Opet u ��� koristimo obrazac za sumu qlanova geometrijskog niza pa dobijamo
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Pritom je � � e � �� Dokazano je da je e transcendentan broj� tj� on ne pred�
stav	a rjexe�e nijedne algebarske jednaqine s cjelim koeficijentima� Da�emo
prvih deset decimala broja e� e � ��	��������� 
 
 
 � Napomenimo da se dokaz
teoreme o transcendentnosti broja e mo�e na�i npr� u ����

Napomena� Poxto sam u me�uvremenu uspio dokazati da vrijedi nejednakost
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koja je bo	a �jaqa� od nejednakosti ���� to �emo ovdje dati taj dokaz� U �� smo
dokazali da je

���

�
� �

�

n

�n
� � �

�

��
�

�

��
�

�

��
� � � ��

�

n�
�

Doka�imo da vrijedi nejednakost
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Za n � � dobijamo � � ���� tj� nejednakost je taqna� Za n � � �emo dokazati
datu nejednakost pomo�u matematiqke indukcije� Imamo�
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�� neka je za neko n � �� n� � �n��� Mno�e�i ovu nejednakost sa neje�
dnakox�u n � � � � koja je taqna �jednakost vrijedi samo za n � ��� dobijamo
�n � ��� � �n��� tj� nejednakost vrijedi i za n � �� Dakle� �
�� vrijedi za sve
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Iz nejednakosti �
�� dobijamo nejednakost
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