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NEKI PRIMJERI NESTANDARDNIH JEDNAQINA

�� Razmotrimo eksponencijalnu jednaqinu sa dvije ili vixe nepoznatih koja
se svodi na oblik
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pozitivni brojevi� to je logaritmujemo za proizvo�nu osnovu koju ne�emo pisa	
ti� Prema tome� imamo da je
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U principu dobijena je kvadratna jednaqina po xi� Ukoliko je koeficijent
uz kvadratni qlan jednak nuli� onda se ona svodi na linearnu jednaqinu po
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xi koja se lako rijexava� Dakle� imamo posla sa linearnom jednaqinom po xi

ukoliko va�i ahii � b
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Dakle� izraz D� je diskriminanta kvadratne jednaqine i mora biti nenegativan
da bi jednaqina imala realna rexe�a�
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ci
di
xi � ei a izraz f �

i�xi�

oblika
c�

i

d�

ixi � e�

i

� h�

i� Prema tome� va�i slede�e


�
ci
di
xi � ei

�
log ai �

�
c�

i

d�

ixi � e�

i

� h�

i

�
log bi�

xi log a
ci
di
i � log aeii �

c�

i

d�

ixi � e�

i

log bi � log b
h�

i

i �

�d�

ix
�
i � e�

ixi� log a
ci
di
i � �d�

ixi � e�

i� log a
ei
i � log b

c�
i

i � �d�

ixi � e�

i� log b
h�

i

i �

x�i log a

cid
�

i

di
i � xi log a

cie
�

i

di
� d�

iei
i � log a

eie
�

i

i � xi log b
d�

i
h�

i

i � log b
c�
i
�e�

i
h�

i

i �

Dakle�

x�i log a

cid
�

i

di
i � xi log

a

cie
�

i

di
� d�

iei
i

b
d�

i
h�

i

i

� log
a
eie

�

i

i

b
c�
i
�e�

i
h�

i

i

� ��

Za ai � � naxa jednaqina se svodi na linearnu jednaqinu po xi� Stoga� neka
je ai �� �� Imamo


�xi���� �

log
b
d�

i
h�

i

i

a

cie
�

i

di
� d�

iei
i

�p
D�

log a

�cid
�

i

di
i

�

gdje je

D� � log�
a

cie
�

i

di
� d�

iei
i

b
d�

i
h�

i

i

� log a

�cid
�

i

di
i � log a

eie
�

i

i

b
c�
i
�e�

i
h�

i

i

�

Da bismo imali realnih korijena diskriminanta D� mora biti nenegativna�



Neki primjeri nestandardnih jednaqina �


Qetvrta mogu�nost� Jox preostaje da izraz fi�xi� bude oblika
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Napomena� Problem je uoqiti da li se neka jednaqina mo�e svesti na
oblik ���� To se posti�e ��lakxim i te�im transformacijama�� odnosno za to
ne postoji neka standardna tehnika� ve� to obiqno radimo ��takmiqarskim sna	
la�e�em�� Ilustrujmo to slede�im primjerom�

Primjer� Odrediti sva realna rjexe�a jednaqine
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Dakle� datu jednaqinu smo transformisali u oblik ���� Kako su oba dobijena
sabirka �sa lijeve strane jednakosti ���� nenegativna� to �e �ihov zbir biti
nula ako i samo ako su oba jednaka nuli� Odatle dobijamo
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Napomena� U jednakosti ��� u prvoj zagradi se jav�a naxa tre�a mo	
gu�nost� a u drugoj prva mogu�nost�
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�� Razmotrimo sada jednaqinu sa dvije ili vixe nepoznatih koja se svodi
na oblik
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Rjexe�e� Elementarnim transformacijama datu jednaqinu svodimo na
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n prirodni brojevi �m i n su dati a ostali nepoznati�� Ako je t � s� onda ova
jednaqina nema rjexe�a u skupu N� Prema tome� rijexava�emo ovu jednaqinu u
sluqaju kada je t � s� a do rjexe�a �emo dolaziti uz pomo� ��Velike Fermaove�
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Primjer� Odrediti sva realna rjexe�a jednaqine
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Primjer� Na�i sve parove prirodnih brojeva a� b koji zadovo�avaju je	
dnakost
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Rjexe�e� Poznato je da va�i slede�a nejednakost
 ako je x � �� y � � i
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� �� gdje je p � �� tada je x��py��q �

x

p
�
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q
� sa jednakox�u ako i samo ako

je x � y� Napiximo naxu jednaqinu u slede�em obliku
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U ovom sluqaju �x � �ab� a y � b � �	���
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� �� jednakost ���

va�i ako i samo ako je �ab � b��	��� tj� �ab� b � �	��� Rjeximo ovu posled�u
jednaqinu u skupu N� Ako je a � �� b je negativan broj� xto se lako provjerava�
Zato je a � �� Ako je b � ��� imamo

�ab � b � � � �b � b � � � ��� � �� � ��� � �� � 
��� � �	���

Dakle� b � ��� Po uslovu zadatka je b neparan broj �vidjeti �ab � b � �	���� pa
to mo�e biti samo neki od brojeva �� �� �� �� �� Direktnom provijerom nalazimo
da je b � � �taad je a � ����� ili b � � �tada je a � ���� Dakle� rjexe�a su
ure�ene dvojke ������ �� i ���� ���


