
NASTAVA RAQUNARSTVA

Milan Qabarkapa

PREKLAPAǋE OPERACIJA U C++

Sa malim izuzecima ve�ina operacija jezika C++ mo�e dobiti specijalno
znaqeǌe koje se odnosi na objekte bilo koje klase. Za ugra�ene tipove znaqeǌe
operacije se ne sme promeniti. Na primer, klasa koja sadr�i listu mo�e ope-
raciji + dati novo znaqeǌe: dodavaǌe elementa listi. Kada je preklopǉena
operacija ni jedno od ǌenih osnovnih svojstava nema uticaja, jer se uvodi pot-
puno nova operacija koja se odnosi na objekte nove klase.

Da bi se preklopila operacija, treba definisati xta ona znaqi u odnosu
na klasu, nad qijim se objektima primeǌuje. Radi toga se kreira specijalna
funkcija operacije (operator function), koja definixe dejstvo operacije.

Funkcija-operacije, koja je qlan klase, ima slede�u osnovnu formu:

tip rezultata ime klase :: operator@(spisak parametara)

{ telo funkcije }
Ovde simbol @ predstavǉa znak konkretne operacije (na primer, +, −, =,

++, −− itd) koja se izvrxavaǌem funkcije realizuje drugaqije nego xto je
uobiqajeno. Tip rezultata koji vra�a funkcija je obiqno isti kao i klase kojoj
funkcija pripada, mada se mo�e i razlikovati. Operatorska funkcija se mo�e
realizovati kao funkcija-qlan ili prijateǉska funkcija klase.

Analizirajmo, na primeru, kako se realizuje preklapaǌe operacije. Posma-
tra�emo program kojim se kreira klasa vector, u kojoj su definisane operacije
+ i =. Klasa vector definixe vektor u Dekartovom koordinatnom sistemu.
Operacija sabiraǌa vektora se realizuje sabiraǌem odgovaraju�ih koordinata:
#include <iostream.h>

class vector

{
int x,y; // 2 koordinate vektora

public:

vector operator+(vector t); // preklapanje operacije +

const vector&operator=(const vector &t); //preklapanje operacije =

void show(); // prikazuje koordinate tacke

void assign(int x1, int y1);

};
vector vector :: operator+(vector t)

38 M. Qabarkapa

{
vector temp; // lokalni vektor

temp.x=x+t.x; temp.y=y+t.y;

return temp;

};
const vector& vector :: operator=(const vector &t)

{
if (&t==this) return *this; // provera da li se dodeljuje samom sebi

x=t.x;

y=t.y;

return *this;

};
void vector :: show()

{ cout << "x= " << x << ", y= " << y << endl; };
void vector :: assign(int x1, int y1)

{
x=x1; y=y1;

};
void main()

{
vector a, b, c;

a.assign(5,5);

b.assign(10, 10);

a.show();

b.show();

c=a+b; // koriscenje preklopljenog operatora

c.show();

c=a+b+c;

c.show();

c=b=a;

c.show();

b.show();

// Niz vektora

cout << "======================\n";
vector v[5], vs;

for (int i=0; i<5; i++)

{
v[i].assign(i,i+1);

cout << "Vektor v[" << i << "]=\n";
v[i].show();

}
vs.assign(0,0); // inicijalizuje vektor zbir a

cout << "Zbir vektora ->\n";
for (i=0; i<5; i++)

vs=vs+v[i]; // kompajler interpretira kao vs.operator+(v[i])

vs.show();

}
Izvrxavaǌem programa ispisuje se:

x= 5, y= 5

x= 10, y= 10

x= 15, y= 15

Preklapaǌe operacija u C++ 39

x= 30, y= 30

x= 5, y= 5

x= 5, y= 5

======================

Vektor v[0]=

x= 0, y= 1

Vektor v[1]=

x= 1, y= 2

Vektor v[2]=

x= 2, y= 3

Vektor v[3]=

x= 3, y= 4

Vektor v[4]=

x= 4, y= 5

Zbir vektora ->

x= 10, y= 15

Iz programa mo�emo videti da funkcija:

vector operator+(vector t)

iako realizuje binarnu operaciju +, ima samo jedan parametar t. To je zbog toga
xto kada kompajler u toku prevo�eǌa programa nai�e na operaciju + nad objek-
tima tipa vector, ne realizuje (niti mo�e) uobiqajeno sabiraǌe, ve� u sluqaju,
na primer izraza a+b, ,,pogleda“ da li klasa po qijem xablonu je kreiran obje-
kat a (klasa vector) ima definisanu operatorsku funkciju za operaciju +. Ako
ima, tada a+b interpretira kao poziv funkcije-qlana:

a.operator+(b)

kojim se izraqunava a+b (slika 1). Ovde objekat a pri pozivu funkcije opera-
tor+(b) predaje this-pokazivaq (pokazivaq na samog sebe), pa se funkcija:
vector vector :: operator+(vector t)

{
vector temp; // lokalni vektor

temp.x=x+t.x; // x , y su u pozivu a.operator+(b)

temp.y=y+t.y; // podaci objekta a, a t.x i t.y podaci objekta b

return temp;

};
realizuje tako xto se temp.x=x+t.x i temp.y=y+t.y izvrxavaju kao:

temp.x=this->x+t.x;
temp.y=this->y+t.y

Ovim se obezbe�uje da vrednosti x i y budu podaci objekta a koji poziva funkciju
i koji je levi operand operacije +.

Dakle, uvek levi operand binarne operacije (ovde a) aktivira operatorsku
funkciju sa jednim argumentom – desnim operandom (to je ovde stvarni argu-
ment b), predaju�i joj pokazivaq this (na samog sebe) tako da podaci qlanovi,
koji se koriste u funkciji, potiqu od objekta (ovde a) koji poziva funkciju (sli-
ka 1).

40 M. Qabarkapa

Sl. 1

Ako je a+b izraz sa desne strane operatora dodeǉivaǌa, na primer:

c=a+b;

vrednost koju vra�a a.operator+(b) postaje argument preklopǉenog operatora
dodeǉivaǌa =:

c.operator=(a.operator(b))

kojim se objektu c dodeǉuje vrednost argumenta.
U ovom primeru je bitno da je vrednost koju vra�a funkcija operator+()

tipa vector. To omogu�ava korix�eǌe izraza tipa a+b+c. Preklopǉena opera-
cija + ne meǌa vrednosti svojih operanda, dok preklopǉena operacija = modifi-
kuje operand koji se nalazi sa ǌegove leve strane.

Operacija dodeǉivaǌa je u svakoj klasi podrazumevaju�e definisana
kao poelementno kopiraǌe. Ona se poziva svaki put, kada se jednom objektu do-
deǉuje vrednost drugog. Ako klasa sadr�i poǉa, kojima se memorija dodeǉuje di-
namiqki, neophodno je kreirati funkciju-qlan klase koja realizuje dodeǉivaǌe.
Da bi se saquvala semantika dodeǉivaǌa C++, funkcija-operacija treba da
vrati referencu na objekat, koji je aktivirao, i u svojstvu parametra treba da
ima referencu na objekat koji se dodeǉuje. U klasi vector operacija dodeǉivaǌa
se realizuje na slede�i naqin:

const vector& vector :: operator=(const vector &t)

{
if (&t==this) return *this; // provera da li se dodeljuje samom sebi

x=t.x;

Preklapaǌe operacija u C++ 41

y=t.y;

return *this;

};
Prefiks const na poqetku zaglavǉa funkcije spreqava pokuxaj promene vre-

dnosti objekta na koga referixe funkcija.
Poxto operacija dodeǉivaǌa vra�a referencu na objekat date klase, mogu�e

je korix�eǌe niza takvih operacija u jednom izrazu. Izraz

c=b=a;

se translira u

c.operator=(b.operator=(a));

Preklapaǌe unarnih operacija ++ i –. Preklapati se mogu i unarne
operacije ++ i –. Za realizaciju prefiksne operacije ++ dovoǉno je da se u
prethodnom primeru u opis klase stavi deklaracija:

vector &operator++();

i opixe funkcija-operacija:

vector &vector :: operator++()

{
x++; y++;

return *this; // vraca vrednost izmenjenog vektora

};
Kada se u programu nad objektom c tipa vector primeni prefiksna operacija

++:

++c;

to se interpretira kao poziv funkcije:

c.operator++();

koja objektu c dodaje jediniqni vektor i vra�a uve�ani vektor.
Ako se za realizaciju unarnih operacija koriste funkcije-qlanovi klase,

nisu potrebni javni parametri funkcije, jer objekat koji aktivira funkciju-
operacije xaǉe skriveni pokazivaq this (na samog sebe).

Primetili ste da operatorska funkcija koja realizuje operaciju ++ vra�a
referencu na objekat koji je pozvao (u ovom primeru c). To znaqi da funkciji
(operator − je specijalna funkcija), koja vra�a referencu mo�e biti dodeǉena
vrednost (odnosno vrednost se indirektno dodeǉuje objektu c). Prema tome, u
skladu sa standardom jezika C++ mo�e se pisati ++c=d. Ovakve konstrukci-
je nema bax mnogo smisla pisati, jer, bez obzira na uve�aǌe, objekat c dobija
vrednost d, ali standard ovo dozvoǉava. Mo�e se tako�e pisati niz operatora
++++c, gde jedan operator ++ vra�a referencu na objekat koji ga je pozvao dru-
gom operatoru ++, i kao rezultat dva puta se realizuje uve�avaǌe za jediniqni
vektor objekta c.

42 M. Qabarkapa

U ranim standardima jezika C++ nije bilo mogu�e razlikovati prefik-
snu operaciju unarnog operatora od postfiksne. Novi standard daje takvu mo-
gu�nost. Funkcija-qlan neke klase operator@() odgovara unarnom prefiksnom
operatoru @, dok operator@(int) odgovara postfiksnom operatoru. Pri pozi-
vu postfiksne verzije funkcije kompajler joj predaje neku fiktivnu celobrojnu
konstantu, koja se unutar funkcije ignorixe – slu�i samo da bi se napravila
razlika u opisu prefiksne i postfiksne funkcije-operacije.

Da bi klasa vector mogla da pravi razliku prefiksnog i postfiksnog ope-
ratora ++ potrebno je da u opis klase stavimo:

vector &operator++(); // preklapanje prefiksne operacije ++

vector operator++(int); // preklapanje postfiksne operacije ++

i opixemo funkciju-operaciju za prefiksnu operaciju:
vector &vector :: operator++()

{
x++;

y++;

return *this; // vraca vrednost izmenjenog vektora

};
i opixemo funkciju-operaciju za postfiksnu operaciju:

vector vector :: operator++(int)
{
// argument funkcije int se ignorise

vector temp=*this;

x++; y++;

return temp; // vraca vrednost vektora PRE UVECAVANJA

};
Postfiksna operacija uve�ava koordinate objekta za jediniqni vektor i

vra�a vrednost objekta pre uve�aǌa.
Slede�i primer ilustruje korix�eǌe prefiksnog i postfiksnog operato-

ra ++. Operator + se realizuje drugaqije nego u prethodnom primeru ko-
rix�eǌem parametra koji je referenca sa specifikatorom const – zabraǌuje
promenu stvarnog parametra funkcije. Upotreba reference iskǉuquje aktivi-
raǌe konstruktora kopiraǌa. const iza opisa zaglavǉa funkcije zabraǌuje
promenu podataka qlanova objekta.
#include <iostream.h>

class vector

{
int x,y; // 2 koordinate vektora

public:

vector operator+(const vector &t) const; // preklapanje operacije +

const vector& operator=(const vector &t) // preklapanje operacije =

vector &operator++(); // preklapanje prefiksne operacije ++

vector operator++(int); // preklapanje postfiksne operacije ++

Preklapaǌe operacija u C++ 43

void show(); // prikazuje koordinate tacke

void assign(int x1, int y1);

};
vector vector :: operator+(const vector &t) const

{
vector temp=*this; // lokalni vektor

temp.x+=t.x;

temp.y+=t.y;

return temp;

};
const vector& vector :: operator=(const vector &t)

{
if (&t==this) return *this;// provera da li se dodeljuje samom sebi

x=t.x;

y=t.y;

return *this;

};
vector &vector :: operator++()

{
x++; y++;

return *this; // vraca vrednost izmenjenog vektora

};
vector vector :: operator++(int)

{
// argument funkcije int se ignorise

vector temp=*this;

x++; y++;

return temp; // vraca vrednost vektora PRE UVECAVANJA

};
void vector :: show()

{
cout << "x= " << x << ", y= " << y << endl;

};
void vector :: assign(int x1, int y1)

{ x=x1; y=y1; };
void main()

{
vector a, b, c;

a.assign(5,5);

b.assign(10, 10);

a.show();

b.show();

c=a+b; // koriscenje preklopljenih operatora

c.show();

c++; // koriscenje postfiksne operacije

c.show();

c++; // koriscenje postfiksne operacije

c.show();

}
Izvrxavaǌem programa ispisuje se:

x= 5, y= 5

44 M. Qabarkapa

x= 10, y= 10

x= 15, y= 15

x= 16, y= 16

x= 17, y= 17

Preklapaǌe operacije indeksiraǌa []. Operacija indeksiraǌa [] se
obiqno preklapa, kada klasa sadr�i skup elemenata, za koje indeksiraǌe ima
smisla. Ova operacija vra�a referencu na element skupa, obezbe�uju�i pristup
elementu objekta, kao da se radi o nizu, korix�eǌem indeksa.

Operacija indeksiraǌa se tretira kao binarna operacija, gde je prvi ope-
rand – objekt klase, a drugi operand – celobrojni indeks. Operacija [] se mo�e
definisati samo kao qlan klase (kasnije �emo videti da se operacije preklapaǌa
realizuju i korix�eǌem prijateǉskih funkcija). Radi ilustracije preklapaǌa
operacije [] u slede�em primeru neznatno �e se modifikovati klasa vector:
#include <iostream.h>

class vector

{
int v[3]; // 3-dim vektor

public:

vector() { for (int i=0; i<3; i++) v[i]=0; } // konstruktor

vector(const int a[]) // konstruktor

{ for (int i=0;i<3;i++) v[i]=a[i]; };
vector operator+(vector t); // preklapanje operacije +

const vector& operator=(const vector &t); // preklapanje operacije =

int& operator[](int i); // preklapanje operacije []

void show(void);

};
vector vector :: operator+(vector t)

{
vector temp=*this;

for (int i=0; i<3; i++)

temp.v[i]+=t.v[i];

return temp;

};
const vector& vector :: operator=(const vector &t)

{
if (&t==this) return *this; // provera da li se dodeljuje samom sebi

for (int i=0; i<3; i++)

v[i]=t.v[i];

return *this;

};
int &vector :: operator[](int i)

{
return v[i];

}
void vector :: show(void)

{
for (int i=0; i<3; i++)

cout << v[i] << " ";

cout << "\n";

Preklapaǌe operacija u C++ 45

}
void main()

{
int a[3]=1, 2, 3;

int b[3]=10, 20, 30;

vector v1(a), v2(b), v3;

v3=v1+v2;

// Ispis v3 koriscenjem preklopljene operacije []

for (int i=0; i<3; i++) cout << v3[i] << " ";

cout << "\n";
// Ispis v3 pozivom funkcije-clana

v3.show();

// Preklapanje operacije [] uz vracanje reference

// dozvoljava da se napise:

v1[0]=100; // upucuje na v1.v[0] kome se dodeljuje 100

// v1[i] je poziv funkcije u levom delu operacije dodele:

// v1.operator[](i)

// u levom delu se nalaze funkcija i lvalue istovremeno!

v1[1]=201;

v1[2]=302;

v1.show();

}

