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KOVARIJANTNO DIFERENCIRAǋE

Teorija koneksija i kovarijantnog diferenciraǌa zauzima jedno od central-
nih mesta moderne analize, diferencijalne geometrije i teorijske fizike. Ciǉ
ovog qlanka je da na ,,elementaran“ naqin motivixe i uvede ove pojmove. Pod
,,elementarnim“podrazumevamo ,,na nivou prvih kurseva Analize“.

1. Uvod

Neka su date taqke A(xa, ya, za) i B(xb, yb, zb) u trodimenzionalnom euklid-
skom prostoru. Iz Pitagorine teoreme sledi da je rastojaǌe izme�u ǌih jednako

(1) ρ(A,B) =
√

(xa − xb)2 + (ya − yb)2 + (za − zb)2.

Pretpostavimo daǉe da se ove dve taqke nalaze na povrxi, recimo na povrxini
Zemǉe. Putnik koji �eli da stigne iz taqke A u taqku B mora�e da pre�e
rastojaǌe koje je ve�e od vrednosti izraqunate prethodnom formulom. Zaista,
formula (1) daje du�inu segmenta prave koji spaja taqke A i B. Putnik koji
se kre�e po povrxini Zemǉe, me�utim, ne mo�e da se kre�e po pravoj, jer sfera
ne mo�e da sadr�i segment prave. Poxto je ,,segment prave najkra�e rastojaǌe
izme�u dve taqke“, sledi da �e nax putnik pre�i put qija je du�ina ve�a od
veliqine ρ(A,B).

Koji put od taqke A do taqke B je najkra�i za putnika koji se kre�e po sferi,
ili, opxtije, po nekoj povrxi? Da li uvek postoji takav put? Ako postoji, da
li postoji samo jedan? Kako ga prona�i? To su glavna pitaǌa kojima �emo
se baviti u ovom qlanku. Vide�emo da su ona vezana za naqin na koji taj
putnik izraqunava prvi izvod. Prvi izvod (vektorsko-vrednosne) funkcije r :
(t0 − ε, t0 + ε) → R

3 je

(2)
dr

dt
(t0)

def= lim
h→0

1
h

(r(t0 + h) − r(t0)).

Desna strana u (2) podrazumeva da znamo xta je sabiraǌe vektora i mno�eǌe vek-
tora skalarom. Primetimo da je rezultat sabiraǌa vektora i ǌihovog mno�eǌa
skalarom opet vektor, dakle objekat istog tipa. Dakle, ako je r vektorsko-
vrednosna funkcija, onda je to i desna, a time i leva, strana u (2). Me�utim,
xta ako je r : (t0 − ε, t0 + ε) → S2 preslikavaǌe intervala u sferu S2, ili
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neku drugu povrx? Podsetimo se da se u definiciji sabiraǌa vektora koristi-
mo mogu�nox�u da identifikujemo proizvoǉni vektor sa nekim vektorom qiji je
poqetak, recimo, u koordinatnom poqetku. Ovu identifikaciju vrximo pomo�u
translacije, tj. paralelnog prenosa. Kako preneti ove pojmove na povrxi?

2. Du�ina luka krive

Neka je r(t) = x(t)i + y(t)j + z(t)k glatka1 kriva koja spaja taqke A i B,
tj. neka je r : [a, b] → R

3 glatko preslikavaǌe takvo da je r(a) = A, r(b) = B.
Izaberimo na toj krivoj n taqaka

A = P1(x1, y1, z1), P2(x2, y2, z2), . . . , Pn−1(xn−1, yn−1, zn−1), Pn(xn, yn, zn) = B

takvih da je Pn = r(tk), a = t1 < t2 < · · · < tn−1 < tn = b. Neka je
∆xk = xk+1 − xk; sliqno se definixu ∆yk i ∆zk. Du�ina izlomǉene lini-
je P1P2 . . . Pn−1Pn je L̂(r;n;∆x1, . . . ,∆xn) =

∑n
k=1

√
(∆xk)2 + (∆yk)2 + (∆zk)2.

Neka je podela izabrana tako da je ∆t = tk+1 − tk za svako k. Tada je du�ina
krive r(t) (po definiciji, a u skladu sa geometrijskom intuicijom) L(r) =
lim∆t→0 L̂(r;n;∆x1, . . . ,∆xn), tj.2

L(r) = lim
∆t→0

n∑
k=1

√(
∆xk

∆t

)2

+
(

∆yk

∆t

)2

+
(

∆zk

∆t

)2

∆t.

Primenom Koxijeve teoreme o sredǌoj vrednosti lako se vidi da je

L(r) = lim
∆t→0

n∑
k=1

√
ẋ(ξk)2 + ẏ(ξk)2 + ż(ξk)2∆t, za neke ξk ∈ (tk, tk+1),

gde taqkica iznad slova oznaqava diferenciraǌe po t. Posledǌi izraz je limes
integralne sume funkcije t �→

√
ẋ2 + ẏ2 + ż2. Primetimo da je ova funkcija

euklidska norma ‖dr
dt ‖ tangentnog vektora dr

dt = ẋ i + ẏ j + ż k na krivu t �→ r(t).
Tako dobijamo izraz za du�inu krive

(3) L(r) =
∫ b

a

∥∥∥∥dr

dt

∥∥∥∥ dt.

Sada mo�emo da damo slede�u definiciju.

Definicija 1. Neka su A i B dve taqke na povrxi Σ ⊂ R
3. Rastojaǌem

izme�u A i B nazivamo veliqinu d(A,B) = infr L(r), gde je infimum uzet po
svim glatkim krivim na Σ koje spajaju A i B.

Napomena 1. Iz (3) vidimo da nam je za definiciju du�ine krive, a ti-
me i rastojaǌa, na povrxi Σ dovoǉna norma na tangentnoj ravni TpΣ povrxi u

1 Sva preslikavaǌa, funkcije i krive koje razmatramo u ovom qlanku su glatki, tj. beskonaqno
puta diferencijabilni, pa to ubudu�e ne�emo posebno naglaxavati.

2 Ovde, a i ubudu�e, pretpostavǉamo da su uslovi pod kojima odre�eni limesi, supremumi i
infimumi postoje raspravǉeni u okviru prvog kursa Analize.
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svakoj taqki p ∈ Σ. Ovakva familija normi koja glatko zavisi od p naziva se
Finslerovom metrikom na povrxi a sama povrx dvodimenzionalnom Finsle-
rovom mnogostrukox�u. Kada je ova norma indukovana skalarnim proizvodom,
govorimo o Rimanovim metrikama i Rimanovim mnogostrukostima.

Zadatak 1. Norma ‖(x, y)‖∞ = max{|x|, |y|} zadaje Finslerovu metriku u
ravni R

2. Dokazati da proizvoǉna kriva t �→ (x(t), y(t)) koja spaja koordina-
tni poqetak sa taqkom (1, 0) i zadovoǉava ẋ > |ẏ| ima du�inu 1. Izraqunati
rastojaǌe izme�u taqaka (0, 0) i (1, 0) u toj metrici. �

Sada lako mo�emo da odgovorimo na jedno od pitaǌa postavǉenih u uvodu –
xta je najkra�i put za putnika koji putuje po povrxi.

Definicija 2. Kriva r : [a, b] → Σ naziva se minimalnom geodezijskom
linijom ako je L(r) = d(r(a), r(b)). Kriva r : [a, b] → Σ naziva se geodezijskom
linijom ako je ona minimalna geodezijska linija na dovoǉno malim podinter-
valima intervala [a, b]; preciznije, ako za svako t0 ∈ (a, b) postoji ε > 0 takvo
da je za svaka dva broja s1 � s2 iz intervala [t0 − ε, t0 + ε] du�ina krive r(t),
s1 � t � s2 jednaka d(r(s1), r(s2)).

Primer 1. Jedine geodezijske linije u ravni sa euklidskom metrikom su
segmenti pravih [1]. �

Uz prethodni primer, slede�i zadatak pokazuje da pojam geodezijske lini-
je zavisi od izbora Finslerove metrike i ujedno odgovara i na pitaǌe da li
najkra�i put mora da bude jedinstven.

Zadatak 2. [3] Dokazati da je svaka kriva iz Zadatka 1 minimalna geode-
zijska. �

Napomenimo da je metrika u prethodnom zadatku Finslerova. U sluqaju
Rimanove metrike, geodezijske linije su lokalno jedinstvene. Preciznije, va�i
slede�a teorema, qiji se dokaz mo�e na�i u [5].

Teorema 1. Za svaku taqku p ∈ Σ postoje otvorena okolina Vp ⊂ Σ
i pozitivan broj ε takvi da se svake dve taqke q1, q2 ∈ Vp mogu spojiti
jedinstvenom minimalnom geodezijskom qija je du�ina maǌa od ε.

Globalna verzija prethodne teoreme u opxtem sluqaju ne va�i: minimalna
geodezijska linija izme�u dve udaǉene taqke ne mora da bude jedinstvena. To
pokazuje slede�i primer.

Primer 2. Jedine geodezijske linije na sferi S2 sa euklidskom metrikom
nasle�enom iz R

3 su segmenti velikih kru�nica, tj. preseka sfere sa ravnima
koje sadr�e ǌen centar. Zaista, neka je C ⊂ S2 velika kru�nica i q1, q2 ∈ C dve
taqke koje se mogu spojiti jedinstvenom minimalnom geodezijskom α : [a, b] → Σ,
kao u Teoremi 1. Neka je SC : S2 → S2 refleksija u odnosu na ravan kru�nice
C. Naravno, tada je SC(C) = C. Nije texko videti da je SC izometrija i da
odatle sledi da je i SC ◦ α geodezijska. Iz lokalne jedinstvenosti minimalne
geodezijske sledi da je α([a, b]) = SC(α([a, b])), xto znaqi da je α([a, b]) ⊂ C.
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Najkra�i put izme�u suprotnih polova nije jedinstven. Ako iz sfere od-
stranimo jednu taqku, lako vidimo i da najkra�i put izme�u dve taqke ne mora
uvek da postoji, qak i ako postoji geodezijska izme�u ǌih. �

3. Geodezijske linije i varijacioni raqun

Sada �emo da damo nexto drugaqiji pristup definiciji geodezijskih lini-
ja. Od sada �emo posmatrati samo Rimanove metrike, dakle norme indukovane
skalarnim proizvodom.

Neka je Σ povrx u R
3. Posmatrajmo prostor glatkih krivih Ω(Σ) =

{γ : [a, b] → Σ} i funkcionale L,E : Ω(Σ) → R,

L(γ) =
∫ b

a

∥∥∥∥dγ

dt

∥∥∥∥ dt i E(γ) =
1
2

∫ b

a

∥∥∥∥dγ

dt

∥∥∥∥
2

dt.

Prvi se naziva funkcionalom du�ine, a drugi funkcionalom energije ili
funkcionalom dejstva.

Zadatak 3. Dokazati da se funkcional du�ine ne meǌa, a funkcional
energije meǌa pri reparametrizaciji krive.3 �

Imaju�i u vidu Definiciju 2, mo�emo da pokuxamo da na�emo geodezijsku
liniju kao kritiqnu taqku funkcionala L. Da bismo precizirali taj pojam
(radi se o funkcionalu na beskonaqno dimenzionom i topoloxki veoma slo�enom
prostoru), dajemo slede�u definiciju.

Definicija 3. Kriva γ se naziva ekstremalom funkcionala L ako za
svako glatko preslikavaǌe u : (−ε, ε) × [a, b] → Σ za koje je u(0, t) = γ(t) i
u(s, a) ≡ γ(a), u(s, b) ≡ γ(b) va�i ∂

∂s

∣∣
s=0

L(u(s, ·)) = 0.

Primer 3. (Prava kao ekstremala funkcionala du�ine) Izvod iz-

raza L(u(s, ·)) =
∫ b

a
‖∂u(s,t)

∂t ‖ dt =
∫ b

a

√
〈∂u(s,t)

∂t , ∂u(s,t)
∂t 〉 dt po s je

∂

∂s
L(u(s, ·)) =

∫ b

a

〈
∂2u(s, t)

∂s∂t
,
∂u(s, t)

∂t

〉 (√〈
∂u(s, t)

∂t
,
∂u(s, t)

∂t

〉)−1

dt.

Primenom parcijalne integracije i uslova u(s, a) ≡ γ(a), u(s, b) ≡ γ(b) do-

bijamo
∂

∂s
L(u(0, ·)) = −

∫ b

a

〈
X(t),

d

dt

dγ

dt

(√〈dγ

dt
,
dγ

dt

〉)−1〉
dt, gde je X(t) =

∂u
∂s (0, t). Iz posledǌe formule sledi da je γ ekstremala funkcionala L ako

i samo ako je (∀X(t))〈X(t), d
dt

dγ
dt (

√
〈dγ

dt , dγ
dt 〉)−1〉 = 0, xto je ekvivalentno sa

d
dt

dγ
dt (

√
〈dγ

∂t , dγ
dt 〉)−1 = 0, tj. dγ

dt = const. Rexeǌa su prave. �

3 Pod reparametrizacijom krive γ podrazumevamo krivu γ ◦ ψ, gde je ψ : [a, b] → [a, b] glatka
bijekcija sa glatkim inverzom. Kriva i ǌena reparametrizacija se, oqigledno, razlikuju samo kao
preslikavaǌa, dok su ǌihove slike na povrxi Σ iste. U tom smislu mo�emo da identifikujemo
razliqite reparametrizacije jedne krive.
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Va�i slede�a teorema, qiji dokaz ne navodimo (v. [5]).

Teorema 2. Kriva γ je ekstremala funkcionala L ako i samo ako je
neka ǌena reparametrizacija ekstremala funkcionala E.

Ova teorema nam omogu�ava da geodezijske tra�imo kao ekstremale funkci-
onala E. Vratimo se jox jednom pravoj u euklidskom prostoru.

Primer 4. (Prava kao ekstremala funkcionala energije) Diferen-
ciraǌem izraza E(u(s, ·)) =

∫ b

a
‖∂u(s,t)

∂t ‖2 dt =
∫ b

a
〈∂u(s,t)

∂t , ∂u(s,t)
∂t 〉 dt po s i parci-

jalnom integracijom dobijamo jednostavniji izraz od onog u Primeru 3:

(4)
∂

∂s
E(u(s, ·)) = −

∫ b

a

〈
∂2u(s, t)

∂t2
,
∂u(s, t)

∂s

〉
dt.

Posledǌi izraz je u s = 0 jednak nuli za svaku varijaciju u, pa opet dobijamo
γ̈ = 0. �

Posmatrajmo sada povrx Σ snabdevenu Rimanovom metrikom. Neka je γ(t)
glatka kriva i u(s, t) ǌena glatka varijacija. Ako pokuxamo da ponovimo raqun
iz Primera 3 i 4 i diferenciramo, recimo, funkcional E, vidimo da izraz (4)
nema smisla: skalarni proizvod 〈·, ·〉 je definisan samo na tangentnim ravnima
TpΣ, a vektor ∂2u(s,t)

∂t2 ne mora da pripada tangentnoj ravni povrxi Σ, mada joj
∂u(s,t)

∂t pripada. Opxtije, neka su p �→ Xp i p �→ Yp glatke familije tangentnih
vektora povrxi Σ,4 Neka je DX izvod preslikavaǌa X : Σ → R

3, p �→ Xp i neka je
DX(Yp) ǌegova vrednost u pravcu vektora Yp. Tada DX(Yp) pripada tangentnom
prostoru TpR

3 euklidskog prostora R
3, tj. prostoru vektora sa poqetkom u taqki

p. Izaberimo projekciju

(5) πp : TpR
3 → TpΣ.

Primetimo da izbor projekcije πp nije jedinstven.

Definicija 4. Glatka familija projekcija (5) naziva se koneksijom na
povrxi Σ. Vektorsko poǉe p �→ πp(DX(Yp)) nazivamo kovarijantnim izvodom
vektorskog poǉa X u pravcu vektora Yp i oznaqavamo sa ∇Yp

X.

Nije texko proveriti da operacija ∇ ima slede�a svojstva:

(6)

∇fX+gY Z = f∇XZ + g∇Y Z,

∇X(Y + Z) = ∇XY + ∇XZ,

∇X(fY ) = f∇XY + df(X)Y,

za vektorska poǉa X,Y,Z na Σ i funkcije f, g : Σ → R. Kovarijantno diferenci-
raǌe uvedeno Definicijom 4 zavisi od izbora koneksije, tj. familije projekcija
πp. Iako ovaj izbor nije jedinstven, postoji prirodan izbor koji nam omogu�ava
da raqun iz Primera 3 i 4 prenesemo i na povrxi. Analizom tog raquna odmah

4 Ovakve familije nazivaju se vektorskim poǉima na Σ. Formalno, vektorsko poǉe je pre-
slikavaǌe F : Σ → ⋃

p TpΣ koje zadovoǉava F (p) ∈ TpΣ.
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vidimo da smo u ǌemu koristili Lajbnicovo svojstvo u odnosu na skalarni
proizvod:

(7) Yp〈X1,X2〉 = 〈∇Yp
X1,X2〉 + 〈X1,∇Yp

X2〉,
gde izraz na levoj strani oznaqava izvod funkcije p �→ 〈X1

p ,X2
p〉 u pravcu vek-

tora Yp. Maǌe oqigledno je da nam je, da bismo mogli da ponovimo taj raqun,
neophodna i tzv. simetriqnost kovarijantnog izvoda:

(8) ∇XY −∇Y X = [X,Y ].

Ovde je [X,Y ] = (c1, c2, c3) vektorsko poǉe sa koordinatama

ck =
(
a1

∂bk

∂x
− b1

∂ak

∂x

)
+

(
a2

∂bk

∂y
− b2

∂ak

∂y

)
+

(
a3

∂bk

∂z
− b3

∂ak

∂z

)
,

gde su (a1, a2, a3) i (b1, b2, b3) koordinate vektorskih poǉa X1 i X2 redom. Ovaj
uslov ima ulogu da obezbedi komutativnost drugih parcijalnih izvoda, ∂2u

∂s∂t =
∂2u
∂t∂s , korix�enu u Primerima 3 i 4.

Definicija 5. Ako koneksija π indukuje kovarijantni izvod koji zado-
voǉava (7) i (8), nazivamo je Rimanovom ili Levi-Qivita koneksijom.

Za ovako izabranu koneksiju mo�emo da sprovedemo raqun analogan onom koji
smo u Primeru 4 sproveli za prave i zakǉuqimo da se geodezijske linije karak-
terixu jednaqinom ∇γ̇ γ̇ = 0. Ova jednaqina naziva se jednaqinom geodezijskih.

Zadatak 4. Sprovesti ovaj raqun. �

4. Pokretni koordinatni sistem

Rezultat kovarijantnog diferenciraǌa uvedenog u prethodnom paragrafu
je vektorsko poǉe qija je vrednost u taqki p ∈ Σ vektor u tangentnoj rav-
ni TpΣ. Uporedimo kovarijantni izvod sa obiqnim izvodom DY preslikavaǌa
Y : R

3 → R
3. U euklidskom prostoru R

3 poistove�ujemo paralelne vektore iste
du�ine i orijentacije, pa izvod DY (p) u taqki p ∈ R

3 mo�emo da posmatramo
kao linearno preslikavaǌe DY (p) : R

3 → R
3, a ǌegove vrednosti DY (p)(X) kao

vektore u R
3. Pri tome, za razliqite taqke p, q ∈ R

3 dobijamo suxtinski iste
objekte. Nasuprot tome, ne postoji kanonski5 naqin da identifikujemo vektore
iz prostora TpΣ i TqΣ za p �= q (paralelna translacija u R

3 oqigledno ne mora
da preslikava tangentne vektore u tangentne vektore povrxi Σ). To znaqi da
rezultate kovarijantnog diferenciraǌa treba posmatrati kao vektore u raz-
liqitim vektorskim prostorima. Kako raqunati sa ovakvim vektorima ,,u
koordinatama“? Ovo pitaǌe nas dovodi do slede�eg pojma.

5 Pod kanonski uvedenim pojmom se podrazumeva pojam koji se mo�e uvesti samo pomo�u poj-
mova koje imamo na raspolagaǌu do ǌegovog uvo�eǌa. Npr. postoji izomorfizam izme�u svaka dva
vektorska prostora iste dimenzije, ali ne postoji kanonski izomorfizam izme�u ǌih: da bismo ta-
kav izomorfizam konstruisali, moramo da uvedemo nov objekat u vektorske prostore koje razmatramo,
npr. baze.
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Definicija 6. Neka je za svako p ∈ Σ zadat koordinatni sistem Fp u
tangentnoj ravni TpΣ. Familija {Fp}p∈Σ naziva se pokretnim koordinatnim
sistemom povrxi Σ. Unija svih pokretnih koordinatnih sistema naziva se
glavnim raslojeǌem povrxi.

Radi ilustracije, podsetimo se jednog pokretnog koordinatnog sistema po-
znatog iz kursa Analitiqke geometrije [2].

Primer 5. (Polarne koordinate) Neka je P taqka euklidske ravni R
2

i r =
−→
OP ǌen vektor polo�aja. Oznaqimo sa θ i r = ‖r‖ polarne koordinate.

Posmatrajmo jediniqne vektore

(9) ur = cos θ i + sin θ j, uθ = − sin θ i + cos θ j

u prostoru TP R
2. Vektor ur je tangentni vektor poluprave θ = const, a vektor

uθ tangentni vektor kru�nice r = const. U ovim oznakama, vektor polo�aja taqke
P je r = rur.

Posmatrajmo krivu t �→ r(t). ǋen tangentni vektor je v = dr
dt = d

dt (rur) =
dr
dt ur + r dur

dt . Diferenciraǌem jednaqine (9) dobijamo dur

dt = dur

dθ
dθ
dt = dθ

dt uθ, pa
je dr

dt = dr
dt ur + r dθ

dt uθ. Ako posledǌu jednaqinu diferenciramo jox jednom po t,
posle kra�eg raquna (sliqnog prethodnom) dobijamo

a :=
dv

dt
=

(
d2r

dt2
− r

(dθ

dt

)2
)

ur +
(

r
d2θ

dt2
+ 2

dr

dt

dθ

dt

)
uθ.

Ova formula ima slede�u mehaniqku posledicu. Neka je r(t) trajektorija taqke
koja se kre�e pod dejstvom poǉa centralne sile F = λ ur (npr. planeta u
poǉu gravitacije Sunca). Tada iz Drugog ǋutnovog zakona F = ma sledi
r d2θ

dt2 + 2dr
dt

dθ
dt = 0. Ovu diferencijalnu jednaqinu mo�emo da reximo smenom

y = dθ
dt . Ona onda postaje r dy

dt +2y dr
dt = 0, a posle ,,skra�ivaǌa sa dt“ i razdvajaǌa

promenǉivih, y−1dy = −2r−1dr. Rexeǌe ove jednaqine je r2y = C, odnosno,
posle vra�aǌa smene,

(10) r2 dθ

dt
= C.

Neka je A(t) povrxina koju vektor polo�aja planete odseca za vreme t od unu-
traxǌosti svoje eliptiqke orbite. Tada je dA

dt = 1
2r2 dθ

dt . Odatle i iz (10) sledi
tvr�eǌe Drugog Keplerovog zakona: Sektorska brzina kretaǌa planeta
je konstantna. �

Vratimo se sada kovarijantnom izvodu. Neka je e1
p,e

2
p baza vektorskog pro-

stora TpΣ. Proizvoǉno vektorsko poǉe Y na Σ mo�e da se napixe u toj bazi
kao Yp = a1(p)e1

p + a1(p)e1
p, za neke glatke funkcije a1, a2 : Σ → R. Izabe-

rimo vektor Xp ∈ TpΣ. Primenom osobina (6) kovarijantnog diferenciraǌa
dobijamo ∇Xp

Y =
∑2

k=1(dak(p)(Xp)ek
p + ak(p)∇Xp

ek
p). Kovarijantni izvod vek-

torskih poǉa e1,e2 u bazi e1
p,e

2
p mo�e da se zapixe kao ∇Xp

ek = ωk
1 (p)(Xp)e1

p +
ωk

2 (p)(Xp)e2
p, pa je

(11) ∇Xp
Y =

2∑
k=1

(
dak(p)(Xp) +

2∑
j=1

ajω
j
k(p)(Xp)

)
ek

p.
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Iz (6) sledi da su ωj
k(p), k, j ∈ {1, 2} glatke (po p) familije linearnih formi

TpΣ → R. Ove forme nazivamo formama koneksije.

Zadatak 5. Posmatraju�i euklidsku ravan kao povrx z = 0 u R
3, izraziti

formu koneksije u pokretnom koordinatnom sistemu iz Primera 5. �

Dodatak: Uopxteǌa

Neka je M glatka mnogostrukost, tj. podskup euklidskog prostora R
m koji

se lokalno mo�e zadati kao skup nula nezavisnih glatkih funkcija. Preciznije,
svaka taqka p ∈ M ima okolinu Vp takvu da je M ∩ Vp = {x ∈ R

m | f1(x) =
· · · = fk(x) = 0} za neke glatke funkcije f1, . . . ,fk : R

m → R qiji su gradijent-
vektori ∇f1(p), . . . ,∇fk(p) linearno nezavisni u svakoj taqki p ∈ M . Broj
n = m−k nazivamo dimenzijom mnogostrukosti; ako je M povezana on ne zavisi
od izbora taqke p.6 Ortogonalni komplement linearnog omotaqa vektora ∇f1(p),
. . . ,∇fk(p) nazivamo tangentnim prostorom mnogostrukosti M u taqki p i
oznaqavamo sa TpM .

Iz Teoreme o implicitnoj funkciji sledi da za mnogostrukost M dimenzije
n i p ∈ M postoji okolina p ∈ V ⊂ M i glatka parametrizacija u : R

n → V .
Preciznije, u je glatki homeomorfizam (u odnosu na relativnu topologiju na M
nasle�enu iz R

m). Na taj naqin dobijamo lokalne koordinate na M : ako je
p = u(x1, . . . , xn) ka�emo da su (x1, . . . , xn) koordinate taqke p u lokalnim
koordinatama (V, u).

Ako je γ : (−ε, ε) → M kriva u M , diferenciraǌem izraza fj(γ(t)) = 0
zakǉuqujemo da je γ̇(0) ⊥ ∇fj(γ(0)) za j = 1, 2, . . . , k. Odavde se lako vidi
da TpM mo�emo da identifikujemo sa prostorom tangentnih vektora u nuli na
krive u M za koje je γ(0) = p. I tangentne vektore, kao i taqke na M , mo�emo
da zapixemo u koordinatama. Ako je γ(t) = u(x1(t), . . . , xn(t)), onda tangentni
vektor γ̇(0) ∈ Tγ(0) identifikujemo sa n-torkom (ẋ1(0), . . . , ẋn(0)). Odavde se,
posle kra�eg raquna, vidi da, ako su (a1, . . . , an) i (b1, . . . , bn) koordinate istog
vektora u koordinatama (Va, ua) i (Vb, ub), onda va�i

(12) bi =
n∑

j=1

∂yi

∂xj
aj ,

gde su (x1, . . . , xn) koordinate na Va, a (y1, . . . , yn) na Vb.

Levi-Qivitin i Kristofelov pristup koneksijama. Neka je X =
(a1(x1, . . . , xn), . . . , an(x1, . . . , xn)) vektorsko poǉe na mnogostrukosti M , zapisa-
no u koordinatama. Ako ǌegove koordinate diferenciramo, recimo po xk, dobija-
mo n-torku ( ∂a1

∂xk
, . . . , ∂an

∂xk
), koja ne mora da zadovoǉava uslov (12). Dakle, obiqno

parcijalno diferenciraǌe vektorska poǉa ne prevodi u vektorska poǉa. Da bi

6 Ovo tvr�eǌe sledi iz Teoreme o implicitnoj funkciji i Teoreme o invarijantnosti domena;
posledǌa se izuqava na kursevima Algebarske topologije.
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korigovao rezultat diferenciraǌa vektorskih poǉa u koordinatama, Kristofel
je uveo uopxteǌe parcijalnog diferenciraǌa dodavaǌem jox jednog qlana

(13) ∇kaj
def=

∂aj

∂xk
+

n∑
i=1

Γj
kiai,

gde su Γj
ki izabrani tako da je uslov (12) ispuǌen. Geometrijski pristup i smisao

ove ideje naxao je Levi-Qivita. Veliqine Γj
ki u (13) nazivaju se Kristofelovim

simbolima.

Kozulov pristup koneksijama. Kozul je aksiomatizovao Kristofelov
i Levi-Qivitin pristup koneksijama: ako svojstva (6) usvojimo za definiciju
koneksije, Kristofelove simbole mo�emo da izraqunamo u koordinatama i do-
bijemo lokalni zapis (13). Uz dodatne zahteve (7) i (8), dobijeni operator je
jedinstven.

Kartanov pristup koneksijama. Eli Kartan je razvio teoriju koneksija
na jeziku diferencijalnih formi: koneksija je zadata ako je zadata n-torka li-
nearnih formi ωp : TpM → R koja glatko zavisi od p. Definicija kovarijantnog
izvoda onda je direktno uopxteǌe formule (11).

Eresmanov pristup koneksijama. Eresmanove koneksije su uopxteǌa
Kartanovih. Eresman je definisao koneksiju kao familiju horizontalnih pot-
prostora na glavnim raslojeǌima. Diskusija o Eresmanovim koneksijama preva-
zilazi okvire ovog qlanka. Zainteresovanim qitaocima preporuqujemo kǌigu [4],
u kojoj se govori i o ulozi kovarijantnog diferenciraǌa u Kartanovom uopxteǌu
Klajnovog Erlangenskog programa.
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