
NASTAVA MATEMATIKE

2005, L, 4, str. 5–12

Dr Milosav M. Marjanovi�

DIDAKTIQKA ANALIZA – PLAN ZA RAZMATRAǋE

Rezime. Skiciran je celovit kurs (didaktike) matematike za uqiteǉe i
nastavnike, inspirisan idejom Frojdentalove didaktiqke fenomenologije. Za-
snovana na istoriji matematike i obrazovaǌa, matematike kao nauke i psiholo-
giji, didaktiqka analiza sadr¼aja je posmatrana kao jezgro takvog kursa. Samo
na osnovu te analize mogu²e je istinsko oblikovaǌe didaktiqke transpozicije
sadr¼aja koje bi, zatim, bilo xiroko prihva²eno od uqiteǉa.

Razmotrena je i posebno sporna tema – osnove matematiqke logike u xkoli.
Predlo¼en je naqin razrade koji povezuje sadr¼aje prisutne u xkolskoj matema-
tici slede²i ǌihovu interpretaciju, a bez upotrebe istinitosnih tablica.

Sadr�aji koji se razmatraju

• Uloga matematike u kursu za obrazovaǌe uqiteǉa i nastavnika.

• Objediǌavaǌe istorije matematike, matematiqkog sadr¼aja i metodike na-
stave matematike.

• Bitni sadr¼aji kurseva za obrazovaǌe uqiteǉa koji se odnose na geometriju,
broj i logiku.

1. Zalagaǌe za didaktiqku analizu sadr�aja

Matematika se qesto posmatra kao nexto nepromenǉivo i okameǌeno. Sa
takve taqke gledixta bi sledilo da nastavnici treba da nauqe samo jox jednu
stvar – kako da je prenesu na svoje uqenike. Izjaxǌavaju²i se protiv toga,
poqiǌemo sa glavnim taqkama ovog qlanka.

Svi sadr¼aji xkolske matematike imaju jedan od slede²ih aspekata:

◦ istorijski – kada se oni vide kakvi su nekada bili, in statu nascendi1

◦ nauqni – kada se oni vide izlo¼eni na logiqki kompaktan naqin,

◦ didaktiqki – kada se oni transponuju tako da budu podesni za uqeǌe.

U vezi sa xiroko prihva²enim principom da razvoj jedinke sledi razvoj vr-
ste, izvesna upoznatost uqiteǉa i nastavnika s glavnim qiǌenicama iz istorije

Prevod qlanka “Didactical analysis—a plan for consideration”, prikazanog na 10. kongresu o
nastavi matematike ICME–10, Kopenhagen, 4–11. juli 2004, i objavǉenog u qasopisu The Teaching
of Mathematics, Vol. VI, 2, str. 97–104. Preveo V. Mi²i².

1 u staǌu nastajaǌa (lat.)
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matematike (i obrazovaǌa) neosporno je va¼na. Podesan izbor takvih qiǌenica
bi uvek zavisio od specifiqnih sadr¼aja.

Dobro poznavaǌe nauqnog aspekta slu¼i struqǌaku iz metodike matematike
da izvrxi logiqku analizu relevantnih sadr¼aja. Drugim reqima, takvo znaǌe
je osnova na kojoj se precizira znaqeǌe osnovnih matematiqkih pojmova, xto
poma¼e takvom struqǌaku da izbegne formiraǌe kvazi-pojmova i iskrivǉavaǌe
znaqeǌa (tako qesto prisutno u u­benicima za poqetnu nastavu). U izvesnom
stepenu takvo znaǌe se mo¼e smatrati korisnim qak i za uqiteǉe.

Ako su istorija matematike i matematika kao nauka dva stuba na kojima stoji
didaktiqka analiza, tre²i je nauka o uqeǌu i iskustvo u obrazovnoj praksi.
Istra¼ivaǌa naqina na koji mi opa¼amo i shvatamo bila su tradicionalna
preokupacija filosofije. Danas, izlo¼ena eksperimentalnim verifikacijama,
ona su, prete¼no, predmet psihologije. Figurativno govore²i, psiholozi nam
obezbe±uju me±axe koji odre±uju ovaj domen interesovaǌa, ali nam oni ne mogu
re²i kako da ga ,,poploqamo“. Ovo poploqavaǌe je suxtina didaktiqke analize.

Pregledaǌe u­benika iz vixe zemaǉa je najboǉi put da se sagleda staǌe
matematiqkog obrazovaǌa u ǌegovoj najrelevantnijoj realnosti. Uoqava se da
su u­benici za osnovnu xkolu puni grexaka i, uopxte, sre²u se brojna pogre-
xna tumaqeǌa. Oslaǌaju²i se na tradicionalne kurseve metodike matematike
mnogi autori ovih kǌiga pokazuju potpun nedostatak produbǉenog znaǌa o sa-
dr¼aju. Stoga, bez dvoumǉeǌa, didaktiqka analiza glavnih tema xkolske nasta-
ve matematike treba da bude jezgro svih kurseva metodike matematike. Ovo bi
osposobǉavalo studente na obrazovnim institucijama da dostignu majstorstvo u
poznavaǌu predmetnih sadr¼aja, tako da kasnije, kada se na±u u odeǉeǌu, budu
u staǌu da slede didaktiqke transpozicije tih tema sa potpunim razumevaǌem.
Mo¼da bi to moglo da ih ohrabri da razviju kritiqko mixǉeǌe umesto pri-
hvataǌa zdravo za gotovo svega xto im govore raznorazni ,,eksperti“? Ako ova
zapa¼aǌa ukazuju na uznemiravaju²u stvarnost u nastavnoj praksi, ona isto tako
ukazuju na obrazovaǌe uqiteǉa i nastavnika kao na poqetak svake promene.

Oqigledno je da je naxe zalagaǌe za didaktiqku analizu pod neposrednim
uticajem stavova Hansa Frojdentala. Izrazi ,,logiqka analiza sadr¼aja“, ,,di-
daktiqka fenomenoloxka analiza“, ,,didaktiqka fenomenologija“ ukazuju na ona
mesta u ǌegovim kǌigama ([2], [3]) gde su formirani elementi didaktiqke feno-
menologije matematiqkih pojmova. Fenomenologija, razvijena od strane Edmunda
Huserla, insistira na intuitivnom zasnivaǌu i verifikaciji pojmova, bez oba-
ziraǌa na tradicionalna epistemoloxka pitaǌa.

Budu²i da mi predla¼emo prilaz didaktiqkoj analizi ,,odozdo“, predsta-
vi²emo ovde izbor relevantnih tema i veza koje ih objediǌuju, odra¼avaju²i
unutraxǌu celovitost sadr¼aja. Saglasno s takvim stavom uzdr¼a²emo se od
formulisaǌa opxtih zakǉuqaka i zapa¼aǌa razdvojeno od ǌihove osnove u kon-
kretnom materijalu koji se obra±uje. Koreni ovih zapa¼aǌa nalaze se u autoro-
vom iskustvu, zasnovanom na kursevima koje je predavao studentima uqiteǉskih
fakulteta i seminarskom radu s ǌima u kojem su oni analizovali i kritikovali
postoje²e u­benike a zatim uobliqavali delove didaktiqke transpozicije, koje
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su proveravali kroz svoju xkolsku praksu.

U xkoli su ovi studenti uqili euklidsku geometriju koja poqiǌe sa nedefi-
nisanim pojmovima i pretpostavǉenim odnosima me±u ǌima. Ovom pristupu kroz
nauqno izlagaǌe trebalo bi suprotstaviti geometrijske aktivnosti posmatraǌa,
oblikovaǌa i crtaǌa, xto detetu poma¼e da stigne do osnovnog razumevaǌa tih
pojmova. Postoje²a praksa da se takvi studenti upu²uju na dodatne kurseve ma-
tematike je diskutabilna – ne izgleda li boǉe da se oni upute na uqeǌe ponovo
onoga xto ve² znaju, ali na produbǉeni naqin?

2. Analiza geometrije za mla�e razrede osnovne xkole

Ako je xkolska geometrija u osnovi neka verzija euklidske geometrije, bez
obzira koliko pojednostavǉene, onda bi geometrijske sadr¼aje u programima za
mla±e razrede osnovne xkole2 trebalo zvati ,,predgeometrija“. Zahvaǉuju²i ´.
Pija¼eu i ǌegovim eksperimentalnim rezultatima, sada znamo da dete spontano
razvija svoje sopstvene intuitivne geometrijske ideje u redosledu: topoloxke –
projektivne – euklidske. (Za matematiqki zasnovano izlagaǌe ovih ideja vide-
ti qlanak u “The Teaching of Mathematics, vol. IV, 1, pp. 41–70”; videti i na
http://www.komunikacija.org.yu/teachmat e.) Izvesno je da su ti rezultati
dali va¼an podsticaj izboru i sre±ivaǌu predgeometrijskih tema.

2.1. Istorija – spisak tema.

• Pregled aktivnosti qoveqanstva iz arheoloxke proxlosti: oblikovaǌe ka-
menih alatki, dekoracije na keramiqkim predmetima, slike na zidovima
pe²ina. Dizajni na tlu koje prave ǉudi koji pripadaju primitivnim ci-
vilizacijama. Oblik kao svojstvo objekata realnog sveta. Geometrija u
preistorijskim civilizacijama (Daleki istok, Sredǌi istok, Stari Egi-
pat).

• Ra±aǌe prvih grqkih xkola. Talesov dokaz da je ugao upisan u polukrug
prav i poqeci logiqkog mixǉeǌa. Pitagora i shvataǌe da su matematiqki
objekti apstraktne ideje. Pitagorino shvataǌe matematike kao suxtinske
strukture univerzuma. Eratostenovo izraqunavaǌe du¼ine Zemǉinog meri-
dijana (upore±eno sa prividnom i fantazijskom Homerovom slikom sveta).
Euklidovi ,,Elementi“ i geometrija shva²ena kao zatvoren sistem koji sa-
dr¼i uzroke ǌenih sopstvenih fakata. Grqki pojam jednakosti povrxina i
zapremina.

Komentar. Izabrane teme iz istorije geometrije bi trebalo da iz-
lo�e poreklo matematiqkih pojmova koji se odnose na sadr�aje iz mla�ih
razreda osnovne xole. Inaqe, bez tragaǌa za ǌihovim intuitivnim zna-
qeǌem, geometrijske qiǌenice i aksiome, uzete kao istine prihvatǉive a
priori, vode u mistifikaciju i neraumevaǌe.

2 U daǉem ²emo, skra²eno, govoriti ,,osnovne xkole“.
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2.2. Uvodni pojmovi iz psihologije – spisak tema.

• Funkcija oka (sliqnosti i razlike sa kamerom). Interpretacija opa¼aǌa.
Principi opa¼aǌa. Kǉuqevi koji omogu²uju sagledavaǌe dubine.

• Pojmovi kao trodelni entiteti koji, kao svoje sastavne delove, imaju: odgo-
varaju²u klasu primera, mentalnu sliku i ime (ukǉuquju²i i mogu²i simbol
(znak)). Brunerove vrste reprezentacija: enaktivna, ikoniqka i simboliq-
ka. Ikoniqka i simboliqka reprezentacija pojmova. Geometrijski crte¼i
kao ikoniqki znaci.

• Upore±ivaǌe pojmova prema ǌihovom stepenu apstraktnosti. Pojam skupa
kao najopxtiji pojam u odnosu na sve ostale pojmove klasiqne matematike.
Nivoi apstraktnosti. Pojmovi na opa¼ajnom nivou.

• Definicije kao reqenice koje odre±uju neki pojam preko drugog pojma vixeg
reda, uz iskazivaǌe specifiqne razlike (differentia specifica). Tendencije
da se prerano definixe ili dokazuje.

• Ontogenetski razvoj govora prema L. S. Vigotskom ([6]). Spontani i nauqni
pojmovi. Sistemi pojmova. Strukture i kognitivne sheme.

Komentar. Pretpostavǉa se, tako�e, da su studenti odsluxali jedan
ili vixe kurseva psihologije. Ovaj spisak predstavǉa izbor onih tema
koje su posebno korisne, i efektivno objaxǌive preko sadr�aja geometrije
i aritmetike u mla�im razredima osnovne xkole.

2.3. Nabrajaǌe geometrijskih sadr�aja.

• Inherentna geometrija i znaqeǌe reqi koje oznaqavaju mesto, pozicione od-
nose objekata u prirodnom okru¼eǌu, smerove kretaǌa itd.

• Percepcija prostornih objekata i formiraǌe geometrijskih ideja. Odnos
,,objekt – pojam“ i reverzibilnost deqjeg mixǉeǌa.

• Intuitivno opisivaǌe i razlikovaǌe topoloxkih, projektivnih i euklid-
skih svojstava.

• Uslovǉeno i namerno ignorisaǌe prostornih prostiraǌa i formiraǌe poj-
mova: taqka, linija, povrx. Odnosi incidencije: taqka-linija, taqka-po-
vrx, linija-linija.

• Prave linije i krive linije (kao projektivni pojmovi). Otvorene krive i za-
tvorene krive (topoloxki luk i topoloxki krug). Prepoznavaǌe geometrij-
skih oblika: du¼, kru¼na linija, pravougaonik, kvadar (paralelepiped),
cilindar, lopta. Uloga ovih oblika u aktivnostima upore±ivaǌa: du¼i,
xiri, vixi od, itd.

Komentar. Svi predgeometrijski pojmovi su na opa�ajnom nivou inhe-
rentni u svetu realnih objekata i ikoniqkih reprezentacija. Stoga proces
uqeǌa ide od posmatraǌa prema razumevaǌu, pa bi precizan naqin verbal-
nog izra�avaǌa trebalo da razlikuje posmatrane stvari od nauqnih poj-
mova u ranoj fazi ǌihovog izgra�ivaǌa. Predstavǉaǌe empirijskih situ-
acija pomo�u geometrijskih crte�a eliminixe postoje�i xum i otvara
put prema apstrakciji. Takve aktivnosti poma�u detetu da sredi svoje
sopstvene misli o strukturi sveta koji ga okru�uje i dexavaǌima u ǌemu.
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3. Analiza osnovnoxkolske aritmetike

U danaxǌe vreme se vidi da su aritmetiqke kǌige pretrpane lepim ilu-
stracijama. Opqiǌeni ǌihovom lepotom, mogli bismo lako prevideti kako je iz
ǌih sistematsko izlagaǌe aritmetike gotovo ixqezlo. Nema niqeg retrogradnog
u tome da prizovemo slede²e didaktiqke maksime Pestalocijevih sledbenika iz
19-og veka:

• Krajǌi ciǉ nastave aritmetike je izgradǌa apstraktnih pojmova.

• Pojam broja mora biti formiran na osnovi koja obezbe±uje znaqeǌe i oqi-
glednost.

• Ova osnova se ne sme pretvoriti u puku igrariju.

Kako su oni bili u pravu, tada kao i sada!

Izra¼avaju²i naxe uvereǌe da deca uqe aritmetiku s jasno²om i lako²om
samo kada je ona na pravi naqin strukturirana i obra±ena sa puno pa¼ǌe i finih
detaǉa, pa¼ǌu ponovo obra²amo na didaktiqku analizu.

3.1. Istorija – spisak tema.

• Gramatiqki oblici u savremenim jezicima koji ukazuju na postojaǌe ma-
lih brojevnih sistema u predistorijskim kulturama. Brojevi kao qovekovi
primarni pojmovi. Vavilonski brojevni sistem. Egipatski brojevni si-
stem. Grqki (aleksandrijski) naqin zapisivaǌa brojeva. Indijsko-arapski
pozicioni sistem i ǌegovo xireǌe u Evropu. Paralelni razvoj ideja o bro-
jevima kao koliqnicima celih brojeva i odnosima veliqina. Otkri²e nesa-
merǉivih veliqina. Vietova logistica speciosa. Dekartova ,,koordinacija“
prave. Razvoj aritmetiqkih oznaka. Decimalni razlomci. Izgradǌa simbo-
liqke algebre.

• Obrazovno nasle±e: grqka logistica numerosa, sredǌevekovna skolastika, vi-
zuelni metod Komenskog, Pestalocijeva didaktika – brojevi, oblici i reqi
kao osnova elementarnog obrazovaǌa, podela na blokove brojeva fon Rohova,
Grubeov monografski metod itd.

Komentar. Prirodni brojevi i ǌihovi odnosi su se uvek odnosili na
diskretne realnosti (ukǉuquju�i sve vrste skala na koje se veliqine mer-
ǉivih stvari transponuju). Me�utim, du�ine, povrxine i zapremine qi-
sto geometrijskih objekata su nosioci znaqeǌa realnih objekata.

3.2. Nabrajaǌe aritmetiqkih sadr�aja.

• Skupovi na opa¼ajnom nivou. Asimilacija reqi ,,skup“, ,,element“. Kanto-
rov kognitivni princip invarijantnosti broja – ,,ubijaǌe“ dve vrste xuma,
prisutne kod kolekcija stvari koje se mogu opa¼ati: prirode elemenata koje
treba brojati i bilo koje vrste ǌihove organizacije.

• Izgradǌa blokova brojeva (do 10, 20, 100, . . . ). Uloga jednostavnih aritme-
tiqkih izraza koji iznaqavaju zbirove i proizvode kao sredstvo proxiri-
vaǌa blokova. Blokovi kao sistemi me±usobno povezanih pojmova. Specifi-
qni didaktiqki problemi koji se prirodno pojavǉuju pri takvoj izgradǌi
bloka: proceduralno zasnivaǌe glavnih pravila aritmetike u momentima
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kad su specijalno operativni i ǌihovo retoriqko izra¼avaǌe, korix²eǌe
pravila kao osnove za objaxǌeǌa aritmetiqkih postupaka koji se izvode,
formiraǌe aritmetiqkih tablica, itd.

• Uloga dr¼aqa mesta u realizaciji proceduralnih zadataka aritmetike.
Slova u ulozi nepoznatih. Jednostavne jednaqine i ǌihovo rexavaǌe za-
snovano na me±uzavisnosti operacija. Daǉi koraci u razvijaǌu ideje pro-
menǉive. Simboliqko izra¼avaǌe glavnih pravila aritmetike, itd.

Komentar. Ceo proces uqeǌa aritmetike mora se posmatrati na na-
qin koji poqiǌe stvarima koje se opa�aju, nastavǉa se korix�eǌem ikoniq-
kih znakova koji su znaqe�i za pojmove i zavrxava se simboliqkim kodovima
aritmetike. Citiraju�i Huserla, prirodni brojevi i qetiri operacije ni-
su ,,gotovi proizvodi“, ve� treba da budu sintetizovani u svesti uqenika
kroz bri�ǉivo planirane i vo�ene aktivnosti. Svaki pojedinaqni broj je
pojam za sebe i, koriste�i se operacijama, oni postaju me�usobno povezani,
formiraju�i sisteme (strukture) poqetnih blokova. Devijantne savreme-
ne tendencije ignorisaǌa fundamentalne uloge ovih sistema umaǌuju ra-
zumevaǌe i ostavǉaju neke suptilne delove aritmetike da nikad ne budu
obra�eni.

Do sada smo pokuxali da damo skicu, nipoxto potpunu, didaktiqke analize
dveju velikih tema osnovnoxkolske matematike. Slede²i uobiqajeni tok ide-
ja, trebalo bi obraditi teme kao daǉa proxireǌa brojevnih sistema i ǌihovo
strukturiraǌe, razvoj kǉuqne ideje promenǉive, itd. No, sada ²emo ostaviti
takva razmatraǌa po strani i skrenuti naxe razmatraǌe na specijalno kontro-
verznu temu – logika u xkoli.

4. Osnove matematiqke logike

Razvoj logiqkog mixǉeǌa je uvek naglaxavan kao jedan od glavnih ciǉeva ma-
tematiqkog obrazovaǌa. Xiroko posmatrano, ovo mixǉeǌe ukǉuquje sposobnost
apstrahovaǌa, precizno korix²eǌe nauqenih pojmova, i sposobnost formiraǌa
i logiqkog vrednovaǌa slo¼enih reqenica. U svakodnevnom govoru, dve reqenice
se kombinuju, stvaraju²i tre²u, pomo²u veznika ,,i“, ,,ili“, ,,ako . . . tada . . . “.
Logiqka funkcija tih veznika se uqi spontano, kroz govor. U obrazovnoj praksi
nekih zemaǉa se jox odr¼ava ovaj tradicionalni prilaz spontane asimilacije
logiqkih funkcija veznika. Ali, sa porastom kompleksnosti reqenica koje iz-
ra¼avaju razne matematiqke uslove, posebno u simboliqkoj formi, raste potreba
za preciznom upotrebom ovih reqi. Qiǌenica da u prirodnom jeziku ovi vezni-
ci povezuju, kako parove reqi ili fraza, tako i skra²ene oblike reqenica koje
qesto imaju razliqite subjekte, qini ovu potrebu za preciziraǌem jox bitnijim
didaktiqkim zadatkom.

U inovacionom periodu za vreme ,,Nove matematike“ (New Maths), osnovi
matematiqke logike su uvedeni u xkolske programe u obliku koji se nalazi u
nauqnim izlagaǌima. U programima u kojima su se odr¼ali, nalazimo te osnove
kako poqiǌu istinitosnim tablicama i slovima koja oznaqavaju iskaze. Daju se
zadaci tipa ,,odrediti istinitosnu vrednost od“ (i uqenici ih lako rexavaju).
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Ova situacija postaje problematiqna kada se slova koja oznaqavaju iskaze zamene
tvr±eǌima koja nexto znaqe. Tada se, na primer, obe implikacije

1 > 2 =⇒ 3 < 4, 1 > 2 =⇒ 3 > 4

prihvataju kao taqne, i tada ta pravila poqiǌu da izgledaju kao da su proiz-
voǉno birana. Bez jasne uzroqno-poslediqne veze, ovakva slo¼ena tvr±eǌa nor-
malno ±aci do¼ivǉavaju kao apsurdna, pre nego kao taqna. Podse²aju²i da sve
slo¼ene reqenice koje nalazimo u matematici imaju ili retoriqke promenǉive
kao subjekte (sluqaj geometrije), ili su to predikatske formule koje sadr¼e je-
dnu ili vixe promenǉivih (sluqaj algebre), razmatra²emo sad glavni nedostatak
ovakvog prilaza logici. One reqenice koje su nosioci nekog znaqeǌa (Raselova
reqenica), odre±uju propozicione funkcije koje u svakoj taqki svog domena de-
finisanosti imaju iskaze kao svoje vrednosti. Zato, prelaz sa propozicija na
propozicione funkcije je jedan jox nagliji skok nego xto je to u algebri prelaz
sa brojevnih na slovne izraze. Bez razumevaǌa uloge logike u radu sa reqeni-
cama koje imaju promenǉive kao svoj subjekat, logika u xkoli mo¼e izgledati
kao beskorisna tema. Formalno izlagaǌe koje poqiǌe istinitosnim tablicama
sigurno nije odgovaraju²a didaktiqka transpozicija ove teme.

Uobiqajeno je da razvoj logiqkog mixǉeǌa u ovom u¼em smislu poqiǌe na po-
qetku Pija¼eovog perioda formalnih operacija i treba ga nastavǉati kroz qitav
taj period. Uprkos qiǌenici da postoji veliki broj istra¼ivaqkih radova koji
obra±uju pitaǌe uqeǌa osnova logike u xkoli, ne postoje opxte prihva²ena kon-
cepcija i plan uvo±eǌa logiqkih sadr¼aja u matematiqke kurseve. Ovi sadr¼aji
su svakako implicitno sadr¼ani u dugoroqnim temama xkolske matematike kao
xto su rexavaǌe jednaqina i ǌihovih sistema, rexavaǌe nejednaqina, itd. I
upravo kroz takve teme treba poqeti sa promixǉenim uvo±eǌem osnova mate-
matiqke logike. Izostavǉaju²i detaǉe i stupǌeve obrade, skicira²emo glavne
ideje plana izlagaǌa, koriste²i apstraktan jezik matematiqke logike (umesto
ǌegove zamene u vidu adekvatnijih termina didaktiqke transpozicije ove teme).

• Sintaksu matematiqke logike treba videti kao uopxteǌe algebarskog jezika.

• Znaqeǌe veznika ,,i“, ,,ili“ i ,,ne“ treba povezati sa skupovnim operacijama
,,presek“, ,,unija“ i ,,komplement“.

• Samo reqenice koje imaju isti subjekat treba povezivati u slo¼ene reqe-
nice. (U najjednostavnijem sluqaju takve reqenice su: ,,x pripada A“, ,,x
pripada B“.)

• U poqetnom stadijumu razrade, veznici ,,ako i samo ako“ i ,,ako . . . tada
. . . “ interpretiraju se kao relacije u skupu propozicionih funkcija, a ne
kao logiqke operacije. Tada, nala¼eǌem istinitosnih skupova, ovi veznici
se povezuju, redom, sa jednakox²u i inkluzijom skupova.

• Sva izlagaǌa treba da su suxtinski ukǉuqena u matematiqke sadr¼aje,
slu¼e²i ǌihovom preqix²avaǌu.

• Ovo je jox jedna situacija u kojoj se pojam skupa pokazuje korisnim alatom
u formiraǌu pojmova.
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Nasuprot osnovama teorije skupova, koje su naxle svoje pravo mesto i stvar-
nu didaktiqku transpoziciju u savremenim xkolskim programima, osnove matema-
tiqke logike jox uvek qekaju adekvatnu elaboraciju, koja ²e se postupno razviti
kroz niz didaktiqkih transformacija, koje bi dolazile jedna za drugom .
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