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GEOMETRIJSKI POLIFORMIZAM

Osnovni ciǉ ovog rada, da geometrijske poliformizme prika¼e u funkcio-
nalnoj vezi sa razbijaǌem formalizma u nastavi matematike ima glavnu taqku
oslonca u qiǌenici, da slikovito mixǉeǌe kod uqenika ,,ra±a aha do¼ivǉaje“,
dakle u jednom trenutku ,,bǉesak“ kompletne jasno²e. Interpretacija nekog ma-
tematiqkog problema, koga je mogu²e poliformno geometrijski tumaqiti, omo-
gu²ava jedan dinamiqki pristup samom problemu, tj. datom fenomenu, xto proiz-
vodi ǌegovo sveobuhvatno i suxtinsko poimaǌe i razumijevaǌe . Imaju²i ovo u
vidu doxao sam na ideju da kroz jednu do sada nekazivanu aristotelovsku priqu
navo±eǌem pojedinaqnih primjera poliformnim spektrom neobiqnih rjexavaǌa,
tragaju²i pri tom za ǉepotom u inovacijama, biraju²i istorijske sadr¼aje sa ak-
centom na razvoj matematiqkih ideja ili sadr¼aje aritmetiqkog ili algebarskog
tipa koji se mogu geometrijski interpretirati ili qisto geometrijske sadr¼aje
koji jasno pokazuju ilustraciju metoda ili imaju vixestruke primjene, da bi
konaqno apstrahovaǌem izdvojio, tj. indukovao taj znaqajni zakǉuqak da spek-
tar raznovrsnih geometrijskih prikazivaǌa jednog matematiqkog problema uvi-
jek implicira ,,aha do¼ivǉaje“, tj. omogu²ava dinamiqki pristup tom problemu,
xto kao konaqnu posǉedicu ima kompletno i suxtinsko poimaǌe i razumijevaǌe
datog zadatka.

Kada je poqetkom tre²e decenije XX vijeka Rudolf Arnhajm, jedan od osni-
vaqa gextaltistiqkog pravca u psihologiji, pisao svoje kapitalno djelo [1], sve
svoje tvrdǌe bazirao je na geometrijskim intepretacijama. Crtaǌe je prvi korak
ka apstrakciji (bitna svojstva se sa¼imaju, a nebitna zanemaruju). Geometrij-
ske slike pravimo da bismo stabilizovali naxe unutraxǌe predstave. Vizuelno
mixǉeǌe – mixǉeǌe u slikama ima osobinu sveobuhvatnosti i nije lako preno-
sivo. Slike, tj. ikone predstavǉaju nosioce informacija. Zato, kada govorimo
o ,,dobroj geometriji“, treba staviti u centar priqe dobar zadatak prikazan
lijepom slikom i ¼ivim jezikom.

,,´ivi jezik“ omogu²ava da vizuelno mixǉeǌe bude lako prenosivo. Qla-
nak I. F. Xarigina [7] potvrdio je ono xto sam imao u vidu kada sam pisao
metodiqke priruqnike [3] i [5], kao i rad [4], da xiroki spektar neobiqnih geo-
metrijskih priqa i interpretacija ilustrovanih slikama ,,xariginovskog“ ob-
lika, oboga²uje znaqajno nastavu matematike u funkciji razbijaǌa formalizma
u ǌoj. U pomenutim radovima prikazao sam niz geometrijskih poliformizama
i ǌihovu primjenu u nastavnoj praksi. Jasno je da ovdje ne mogu ponoviti sve
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primjere tih raznovrsnih rjexavaǌa, ve² samo neke od ǌih. Evo elementarnog
primjera iz pomenutih radova koji mo¼emo iskoristiti u modernizovanoj vari-
janti heuristiqke metode Georga Poje insistiraju²i kod uqenika na samostalnom
pronala¼eǌu jox nekih dokaza poznate teoreme.

Bez mnogo pretjerivaǌa mo¼e se kazati da je ideju o strogim potpunim
dokazima qovjeqanstvo dobilo od jednog qovjeka i jedne kǌige: od Euklida i

ǌegovih ,,Elemenata“. I danas je prouqavaǌe
elementarne planimetrije jox uvijek najboǉa
prilika da se usvoje ideje strogog dokaza. Te-
xko da se mo¼e na²i poznatiji primjer od te-
oreme: u svakom je trouglu zbir unutraxǌih
uglova jednak 180◦. Slici 1, koja je uobiqa-
jena pratiǉa ovoga dokaza, ne treba mnogo ob-
jaxǌavaǌa.

Sl. 1

Tjemenom A povuqena je paralela sa stranicom BC. Uglovi kod B i C jedna-
ki su odgovaraju²im kod A (kako je to prikazano na slici) jer su naizmjeniqni
uglovi me±usobno jednaki. Zbir tri unutraxǌa ugla trougla jednak je zbiru
tri ugla sa zajedniqkim tjemenom A koji grade opru¼en ugao. Ovim je teorema
dokazana. Ve²ina nastavnika, vjerovatno, ovim zavrxava priqu o dokazivaǌu
ove poznate teoreme. Me±utim, uvijek postoje oni koji pojaxǌavaju ,,jasno“ sma-
traju²i da je za istinsko razumijevaǌe problema potreban dinamiqki pristup
istom. O qemu se zapravo ovdje radi? Quveni ameriqki psiholog £or­ Berkli
smatra: ako ovu trideset drugu teoremu iz Euklidovih ,,Elemenata“ demonstri-
ra na taj naqin xto ²e povu²i paralelu sa jednom stranom tog trougla kao na
slici 2 ili na slici 3, xto ²e pokazati da ekvivalent ta tri ugla kao zbir
daje polovinu kruga (opru¼en ugao) treba ista²i da veliqinu uglova ne treba
uzimati u obzir, qime se dokazuje da teorema va¼i za svaki trougao. Me±utim,
Rudolf Arnhajm ka¼e da ovakvo dokazivaǌe svakako ima praktiqnu vrijednost,
ali za mixǉeǌe je va¼no da opxtost teoreme postane oqigledna, a da to nije
bax vidǉivo iz uopxtavaǌa kod takvog statiqkog pristupa problemu, pogotovo
ako to predoqavamo uqenicima mla±eg uzrasta (osnovne xkole).

Sl. 2 Sl. 3

Zato on predla¼e da se slika 2 transformixe u sliku 3 tako xto ²e dvi-
je strane trougla zamisliti kao krakove neograniqene du¼ine koji mogu da se
okre²u u taqki osovine, nezavisno preko qitave polovine kruga, pri qemu oni
bez obzira na polo¼aje obrazuju tri odsjeqka koji kao zbir daju istu polukru¼nu
cjelinu. Kada se jedan ugao pove²ava, ǌegov susjed se automatski u odgovaraju²oj
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mjeri smaǌuje. Statiqan pojam zamjeǌen je dinamiqnim. Teorema nije samo za-
mixǉena kao opxta, ve² je kao opxtu i opa¼amo.

Sl. 4

Evo jox jednog dinamiqnog pristupa dokazu ove quvene teoreme koju mo¼emo
demonstrirati uqenicima osnovne xkole. Za ovu interpretaciju dovoǉno je ima-
ti jednu ±aqku olovku i sliku proizvoǉnog nejednakostraniqnog trougla i prim-
jeniti kompoziciju izometrijskih transformacija rotacija i translacija nai-
zmjeniqno kao na slici 4.

Pri ovom dokazivaǌu koristili smo prikriveno Plejferov aksiom paralel-
nosti.

Sliqno prethodnom primjeru korix²eǌem jox jednog ekvivalenta aksiome
paralelnosti, tj. da je zbir unutraxǌih uglova u bilo kojem trouglu konstant-
no jednak, ovu teoremu mo¼emo dokazati i na sǉede²i naqin: neka je α + β + γ =
S zbir unutraxǌih uglova u proiz-
voǉnom trouglu ABC. Ako na stra-
nici AB izaberemo proizvoǉno taqku
D razliqitu od A i B, kao na slici
5, lako je uoqiti

2S = α + δ + γ1 + γ2 + ϕ + β

= α + β + γ + 180◦ = S + 180◦,

jer je δ + ϕ = 180◦, a γ1 + γ2 = γ, pa
je oqigledno S = 180◦, xto je trebalo
dokazati.

Sl. 5

Na jednom od qasova uvje¼bavaǌa gradiva u I razredu gimnazije u jednoj
modernijoj varijanti heuristiqke metode Georga Poje od uqenika sam zahtijevao,
da biraju²i proizvoǉno taqku D u ravni crte¼a, pokuxaju prona²i jox neki
naqin dokazivaǌa ove teoreme. Kao rezultat takvog samostalnog rjexavaǌa datog
problema proistekao je sǉede²i algoritam dokazivaǌa tog quvenog Euklidovog
stava.

Ako pretpostavimo da je zbir svih unutraxǌih uglova u svakom trouglu
konstantno jednak, xto je ekvivalent aksioma paralelnosti, posmatraju²i sliku
6 lako je uoqiti da je S = α + β + γ = α1 + α2 + β1 + β2 + γ1 + γ2, kao i
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3S = α1+β1+δ+β2+γ2+µ+γ1+α2+ε, tj. 3S = α1+α2+β1+β2+γ1+γ2+δ+µ+ε,
odnosno, 3S = S + 360◦, pa je S = 180◦, xto je i trebalo dokazati.

Sl. 6 Sl. 7

Ovo dokazivaǌe ima jox dvije varijante izbora taqke D. U prvom sluqaju,
kada taqka D pripada nekoj od pravih kojima pripadaju stranice trougla spoǉa,
tj. tako da raspored taqaka bude npr. A–B–D. Ovaj dokaz je sliqan onome sa
slike 5.

A sada pogledajmo polo¼aj kada taqka D ne pripada pravim kojima pripadaju
stranice4ABC, niti ǌegovoj unutraxǌosti kao na slici 7. Tada posmatraju²i
trouglove: 4ABE, 4BDE, 4DCE, 4CAE, 4ABC i 4BDC, lako je vidjeti
da je

4S = α1 + β + ϕ + β1 + δ1 + ε + δ2 + γ1 + ψ + γ + α2 + µ,

pa je 4S = 2S + 360◦, tj. S = 180◦.
Jedan od najǉepxih primjera poliformnih geometrijskih interpretacija je

spektar raznovrsnih dokaza Pitagorine teoreme. Ovdje ²u navesti desetak od
tih pedesetak dokaza koje sam naveo u [3] i [5], stavǉaju²i posebno akcenat na
dinamiqnost algoritama izvo±eǌa ove teoreme koji u sebi objediǌavaju i neke-
koliko istoriji matematike veoma poznatih izvo±eǌa. Tako integralni pristup
dokazivaǌa do sada nijesam sretao u meni dostupnoj matematiqko-metodiqkoj li-
teraturi.

1) Hokinsov (Hawkins) dokaz. Dati pravougli trougao BAC, qije su
katete BC = a i AC = b, a hipotenuza BA = c, rotira se u ravni trougla oko
tjemena C za ugao od −90◦, tako da do±e u polo¼aj 4B1A1C. Prava (B1A1) u
presjeku sa pravom (BA) odre±uje taqku D i B1D predstavǉa visinu trougla
BAB1. Povrxina qetvorougla BA1AB1, osjenqenog na slici 8, mo¼e se izraziti
na dva naqina: a) Tra¼ena povrxina P se sastoji iz povrxine trougla BCB1,
tj. a2/2, i povrxine trougla A1CA, tj. b2/2, dakle,

(a) P = PBA1AB1 =
a2 + b2

2
.

b) Trouglovi BA1B1 i B1A1A imaju zajedniqku osnovicu B1A1 = c, a ǌihove
visine su BD i AD. Povrxina qetvorougla BA1AB1 mo¼e se izraziti i na
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slede²i naqin:

P =
c ·BD

2
+

c ·AD

2
=

c

2
(BD + AD) =

c

2
· c =

c2

2
,

a odakle je: (b) P =
c2

2
. Iz (a) i (b) dobijamo konaqno da je: a2 + b2 = c2.

Sl. 8 Sl. 9

2) Renov (Ren) dokaz. Ovaj postupak je u izvjesnom smislu sliqan Hokin-
sovom, pa i Euklidovom i Baxarinom algoritmu.

Konstruiximo nad stranicama BC i AC kvadrate BCGH i AEFC, a zatim
povucimo du¼i HA i BE i spustimo iz B i A redom normale na HA i BE, pri
qemu je (HA) ∩ (BE) = {S} i S ∈ (CD), gdje je (CD) prava kojoj pripada
visina trougla ABC na stranicu AB. Zaista, ako je taqka B1 ona taqka u
kojoj normala BB1 sijeqe pravu (CD), lako je uoqiti podudarnost trouglova
4HBA ∼= 4BCB1, jer imaju jednake uglove (uglovi sa normalnim kracima) i
HB = BC, pa je BA = CB1. Na analogni naqin, ako je taqka B′ ona u kojoj
normala AB′ sijeqe pravu (CD), lako se pokazuje podudarnost4EAB ∼= 4ACB′,
a odatle slijedi CB′ = AB, pa kako je i BA = CB1 to se B1 i B′ poklapaju. Ako
imamo u vidu prethodnu qiǌenicu, lako je uoqiti jednakost povrxina sǉede²ih

trouglova: PBCB1 = PHBA =
a2

2
i PACB1 = PEAB =

b2

2
, pa je:

a) PBCB1 + PACB1 =
a2 + b2

2
, a sa druge strane je:

b) PBCB1 + PACB1 =
CB

2
(BD + DA) =

BA ·BA

2
=

c2

2
,

pa iz a) i b) slijedi c2 = a2 + b2, xto je i trebalo dokazati (slika 9).
Razmixǉaju²i o tome kako da pojednostavim prethodne dokaze doxao sam do

jednog dinamiqkog pristupa sagledavaǌa i objediǌavaǌa ova dva algoritma u
jedan. Prije nego objasnim suxtinu tog uopxtavaǌa, evo jednog unapre±eǌa, tj.
inoviraǌa Renove teoreme koje mi je omogu²ilo da do±em do niza novih dokaza
koji obuhvataju prethodna dva, i jox neke specijalne sluqajeve.
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3) Moderna varijanta Renovog dokaza. Kod ovoga dokazivaǌa kori-
sti²u poznatu teoremu o jednakosti povrxina razlo¼ivo jednakih poligona. Da-
kle, posmatraju²i sliku 10, mo¼emo uoqiti da se povrxina osjenqenog qetvoro-
ugla mo¼e izraqunati na dva naqina:

PBCAB1 = PBCB1 + PCAB1 =
CB1 ·BD

2
+

CB1 ·DA

2
=

CB1(BD + DA)
2

=
c2

2
,

(1)

PBCAB1 = PBLB1 + PCAL =
BL ·B1C1

2
+

CA · CL

2

(2)

=
(a + x)a

2
+

b(b− y)
2

=
a2

2
+

ax

2
− by

2
+

b2

2
=

a2

2
+

b2

2
,

jer iz sliqnosti trouglova 4CAL ∼ 4C1B1L slijedi CL : CA = C1L : C1B1,
odnosno x : b = y : a, tj. a · x = b · y. Iz (1) i (2) slijedi c2 = a2 + b2, qime je
dokaz zavrxen.

Sl. 10 Sl. 11

Ako malo studioznije proanaliziramo Hokinsov i inovirani Renov dokaz,
mo¼emo do²i do sǉede²eg uopxteǌa tih dokaza, a rekao bih u nekom smislu i do
dinamiziraǌa Euklidovog i Baxarinog dokaza.

4) Dokaz. Rotirajmo trougao BCA oko taqke C za ugao od −90◦ i trans-
lirajmo ga du¼ prave (BC), ali tako da normalna projekcija tjemena B1 na
pravu (BA) – taqka M pripada du¼i BA. Trougao BCA se preslikao u trou-
gao B1C1A1, pri qemu je ∠ACN = ∠A1C1B1 = 90◦, vidi sliku 11. Povrxinu
osjenqenog qetvorougla mo¼emo izraqunati na dva naqina:

PBA1AB1 = PBA1B1 + PA1AB1 =
A1B1 ·BM

2
+

A1B1 ·MA

2
(1′)

=
A1B1(BM + MA)

2
=

A1B1 ·BA

2
=

c · c
2

=
c2

2
,
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PBA1AB1 = PBLB1 + PA1LA =
BL ·B1C1

2
+

A1L ·AC

2
(2′)

=
(a− y)a + (b + x)b

2
=

a2 − ya + b2 + xb

2
=

a2

2
+

b2

2
.

Ovdje treba napomenuti da je y · a = x · b, xto sǉedi iz sliqnosti pravouglih
trouglova 4CLA ∼ 4C1LB1, jer su im i uglovi ∠CLA i ∠C1LB1 jednaki kao
unakrsni. Konaqno, iz (1′) i (2′) slijedi c2 = a2 + b2, qime je dokaz zavrxen.

Pogledajmo jox jednu varijantu ovog dokaza u sluqaju rasporeda taqaka A1–
L–C1 na pravoj (BC), kao na slici 12. Analogno prethodnom postupku, povrxinu

osjenqenog qetvorougla ²emo izraqunati na dva naqina: PBA1AB1 =
c2

2
(1∗) i

(2∗) PBA1AB1 = PBLB1 + PA1AL =
(a + x)a

2
+

(b− y)b
2

=
a2

2
+

b2

2
,

pa iz (1∗) i (2∗) slijedi tvr±eǌe, uz napomenu da je xa = yb posǉedica sliqnosti
pravouglih trouglova 4C1LB1 ∼ 4CLA.

Sl. 12 Sl. 13

Jasno je da se Hokinsov dokaz dobija u sluqaju kada je C ≡ C1, tj. ako su
tjemena B1, C ≡ C1 i A kolinearna, dok se modernizovani Renov dokaz pojavǉuje
u specijalnom sluqaju kada je C ≡ A1, tj. ako se normalna projekcija tjemena B1

na du¼ BA poklapa sa normalnom projekcijom tjemena C na du¼ BA, tj. taqkom
D ≡ M , vidi sliku 8 i slike 11 i 12.

Pogledajmo jox dva specijalna sluqaja koji poput prethodnih proistiqu
iz qetvrtog dokaza, a koje kao ni taj opxti 4. postupak nijesam sretao u meni
dostupnoj matematiqkoj literaturi.

5) Dokaz. Posmatrajmo specijalni sluqaj kada se normalna projekcija tje-
mena B1 na pravu (BA) poklapa sa taqkom, kao na slici 13. Primjenom postupka,
kao kod dokaza 8) dobijamo da je povrxina trougla BAB1 jednaka s jedne strane
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c2/2, a opet ta ista povrxina mo¼e se izraziti i kao

PBAB1 = PBLB1 + PBLA =
BL ·B1C1

2
+

BL ·AC

2
=

(a− y)a
2

+
(b + x)b

2

=
a2 − ya + b2 + xb

2
=

a2

2
+

b2

2
,

jer kao i u prethodnom primjeru imamo da je x · a = y · b, pa je a2 + b2 = c2, xto
je i trebalo dokazati.

6) Dokaz. Ovaj specijalni sluqaj nastaje kada se normalna projekcija tje-
mena B1 na pravu (BA) poklapa sa tjemenom A trougla BAC, vidi sliku 14.
Povrxina trougla BA1B1 se tako±e mo¼e izraqunati na dva naqina:

PBA1B1 =
BA1 ·B1C1

2
=

(a + x)a
2

=
a2

2
+

xa

2
=

a2

2
+

b2

2
,

jer je b2 = x · a, xto se mo¼e pokazati bar na dva naqina: b je geometrijska
sredina odsjeqaka a i x u trouglu BAA1 ili kao posǉedica sliqnosti trouglova
4CAA1 ∼ 4C1B1A1. Na drugi naqin prikazana povrxina trougla BA1B1 je

PBA1B1 =
A1B1 ·AB

2
=

c2

2
,

pa slijedi tvr±eǌe.

Sl. 14 Sl. 15

Pogledajmo sada dokaz koji je u izvjesnom smislu sliqan Renovom dokazi-
vaǌu, xto mi je omogu²ilo da ga po analogiji sa qetvrtim dokazom uopxtim i
uka¼em na pet specijalnih sluqajeva koji proistiqu iz tog uopxtavaǌa.

7) Kavamurin dokaz. Student £on Kavamura je poslao sǉede²i dokaz
profesoru Krisu Dejvisu sa Oklanda, koji ga je objavio u qasopisu Mathematics
Teacher 1975. godine.

Qetvorougao ACBD ima normalne dijagonale AB i CD, tj. AB ⊥ CD (vidi
sliku 15) pa je

c2

2
= PACBD = PCBD + PACD =

a2

2
+

b2

2
,

tj. c2 + a2 + b2, xto je i trebalo dokazati.
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Ako bismo pokuxali da dinamiqki sagledamo prethodni algoritam, doxli
bismo do ǌegovog sveobuhvatnijeg poimaǌa koje bi rezultiralo opxtijim iz-
vo±eǌem dokaza teoreme, odnosno dokazima 8a, 8b, 8v i 8g qije su neposredne
posǉedice pet specijalnih sluqajeva, tj. dokazi 7, 9, 10, 11 i 12.

8a) Dokaz. Ako rotiramo pravougli trougao ACB oko tjemena C za ugao
−90◦, a zatim ga transliramo du¼ pravca (AC), on se preslikava u ǌemu podu-
darni pravougli trougao DFE i neka je raspored taqaka na pravoj (AC) A–F–
E–C kao na slici 16. Qetvorougao EBDA ima normalne dijagonale, pa je lako
izraqunati ǌegovu povrxinu:

PEBDA = PABE + PABD =
AB · EM

2
+

AB ·MD

2
=

AB(EM + MD)
2

=
AB · ED

2
=

c2

2
.

Lako je uoqiti da se ta ista povrxina mo¼e izraqunati i na drugi naqin kao

PEBDA = PFEB + PFDB + PAFD =
FE · CB

2
+

FD · FC

2
+

FD ·AF

2

=
a2

2
+

b(b− x)
2

+
b · x
2

=
a2

2
+

b2

2
,

odakle slijedi da je c2 = a2 + b2, xto je i trebalo dokazati.

Sl. 16 Sl. 17

8b) Dokaz. U sluqaju kada je raspored taqaka F–C–E na pravoj (AC) kao na
slici 17, lako je uoqiti da se povrxina qetvorougla AEBD mo¼e izraqunati na

dva naqina, najpre PAEBD =
AB · ED

2
=

c2

2
, jer su du¼ine ǌegovih normalnih

dijagonala jednake, AB = ED = c. S druge strane, ta ista povrxina mo¼e
se razlo¼iti na zbir povrxina dva pravougla trougla AFD i EBC i jednog
pravouglog trapeza FCBD, tj.

PAEBD = PAFD + PECB + PFCBD =
(b− x)b

2
+

(a− x)a
2

+
(a + b)x

2

=
b2 − xb + a2 − xa + ax + bx

2
=

a2 + b2

2
,
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pa konaqno imamo da je c2 = a2 + b2, qime je dokaz zavrxen.

Trougao FED mo¼emo translirati du¼ prave (AC) u oba ǌena smjera, tako
da su mogu²e jox dvije karakteristiqne opxte pozicije ovog integralnog, dina-
miqkog dokazivaǌa, kao na slikama 18 i 19.

8v) Dokaz. Ako je raspored taqaka na pravoj (AC) takav da je A–C–F–E
i pri qemu je FD = b > a = CB i tjeme D ne pripada oblasti ugla BAC, tada
imamo sluqaj kao na slici 18.

Povrxinu qetvorougla AEBD mo¼emo izraqunati na sǉede²a dva naqina.
Zbog normalnosti pravih (AB) ⊥ (ED) lako je uoqiti da je

PAEBD = PAEB + PABD =
AB · EM + AB ·MD

2
(1)

=
AB(EM + MD)

2
=

AB · ED

2
=

c2

2
,

PAEBD = PAND + PNEB =
AN · FD

2
+

NE · CB

2
(2)

=
(b− y)b

2
+

(a + x + y)a
2

=
b2

2
+

a2

2
,

jer je yb = (x + y)a posǉedica sliqnosti pravouglih trouglova 4NCB ∼
4NFD, koji imaju i zajedniqki ugao kod tjemena N . Iz (1) i (2) slijedi
tvr±eǌe.

Sl. 18 Sl. 19

8g) Dokaz. Analizirajmo sluqaj kada je raspored taqaka na pravoj (AC):
F–A–E–C. Tada povrxinu qetvorougla AEBD qije su dijagonale normalne,
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mo¼emo tako±e izraziti na dva naqina:

PAEBD = PEDA + PEDB =
ED ·AM

2
+

ED ·MB

2

(1)

=
ED(AM + MB)

2
=

ED ·AB

2
=

c2

2
,

PAEBD = PFCBD + PFAD + PECB =
(a + b)(a + b− x)

2
− (a− x)b

2
− (b− x)a

2

(2)

=
a2 + 2ab + b2 − ax− bx− ab + xb− ba + xa

2
=

a2

2
+

b2

2
.

Sada pogledajmo sve ostale specijalne sluqajeve koji proistiqu iz grupe
dinamiqkih dokaza 8a, 8b, 8v i 8g. Lako je uoqiti da Kavamurin dokaz 7 dobijamo
u sluqaju ako se poklapaju tjemena trouglova ABC i DFE.

Sl. 20 Sl. 21

9) Dokaz. U sluqaju kada je C ≡ F , a raspored taqaka na pravoj (AC)
je A–C–E kao na slici 20, pojavǉuje se Hokinsov specijalni sluqaj ovog di-
namiqkog izvo±eǌa. Povrxina qetvorougla AEBD lako se izraunava na dva

naqina: PAEBD = PACD + PECB =
b2

2
+

a2

2
, kao i PAEBD = PABE + PABD =

AB · EM + AB ·MD

2
=

AB(EM + MD)
2

=
AB · ED

2
=

c2

2
, pa je c2 = a2 + b2,

xto je i trebalo dokazati.

10) Dokaz. U sluqaju kada je A ≡ E, a raspored taqaka na pravoj (AC) je
F–A–C kao na slici 21, dobijamo Garfildov (Garfield) dokaz Pitagorine teo-

reme. Povrxina trougla ABD se mo¼e izraqunati na dva naqina: PABD =
c2

2
,

kao i

PABD = PFCBD − PFAD − PACB =
(a + b)(a + b)

2
− ab

2
− ab

2
=

a2

2
+

b2

2
,

odakle slijedi tvr±eǌe.
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11) Dokaz. U sluqaju kada je A ≡ F , a raspored taqaka na pravoj (AC) je
A–E–C kao na slici 22, imamo jox jedan specijalni dokaz koji nijesam sretao u
meni dostupnoj matematiqkoj literaturi. Povrxinu qetvorougla AEBD mo¼emo

izraqunati na dva naqina: PAEBD = PAEB + PABD =
a2

2
+

b2

2
i PAEBD =

PAED + PEBD =
ED ·AM

2
+

ED ·MB

2
=

ED(AM + MB)
2

=
ED ·AB

2
=

c2

2
,

pa je a2 + b2 = c2.

Sl. 22 Sl. 23

12) Dokaz. U sluqaju kada je raspored taqaka na pravoj (AC) A–C–F–
E, taqka D kolinearna sa taqkama A i B, kao na slici 23, tada imamo jox
jedan specijalni sluqaj dokaza Pitagorine teoreme koji nijesam sretao u meni
dostupnoj matematiqkoj literaturi. Lako je uoqiti da je trougao ADE pra-
vougli, jer je ∠ADE = ∠ADF + ∠FDE = β + α = 90◦, odakle slijedi da
je b2 = FD2 = AF · FE = (b + x)a, jer je visina FD geometrijska sredina
odsjeqaka AF i FE na hipotenuzi AE pravouglog trougla AED. Povrxinu

trougla AEB mo¼emo izraqunati na dva naqina: a) PAEB =
AB ·DE

2
=

c2

2
i

b) PAEB =
AE · CB

2
=

(a + x + b)a
2

=
a2

2
+

b2

2
. Iz a) i b) slijedi tvr±eǌe.

U konkretnom sluqaju poliformno dokazivaǌe Pitagorine teoreme omogu-
²ilo mi je da jednim integralnim sagledavaǌem objedinim qitav niz poznatih
dokaza. Oni su se pojavili kao specijalni sluqajevi tog apstrahovaǌa, tj. kao
neposredne posǉedice navedenih dinamiqkih dokaza 4, 8a, 8b, 8v i 8g. Pored ǌih,
kao neposredna implikacija takvog sagledavaǌa dokazivaǌa Pitagorine teoreme
proistekli su i specijalni sluqajevi 11 i 12, koje nijesam sretao u matematiqko-
metodiqkoj literaturi, pa ih smatram novim. Iako je Lumis (Loomis) daleke
1940. godine objavio preko 370 raznovrsnih dokaza Pitagorine teoreme, nevje-
rovatno zvuqi podatak da se u osnovnoxkolskim i sredǌoxkolkskim u­benicima
pojavǉuju samo dva do tri dokaza ove quvene teoreme.
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Pored navedenih dokazivaǌa postoji i nepregldno ,,more“ i drugih prim-
jera geometrijskih poliformizama od kojih je na mene najupeqatǉiviji utisak
ostavilo poliformno dokazivaǌe adicionih teorema.

Jox kao profesor-poqetnik primjetio sam da kod obrade trigonometrije,
uqenici imaju potexko²a kod razumijevaǌa dokazivaǌa adicionih teorema. U
u­benicima za gimnazije i druge sredǌe xkole ti dokazi su uobiqajeni i do danas
se rade istom metodologijom. Posmatraju²i tu problematiku sada, nakon tride-
setogodixǌeg iskustva u neposrednoj nastavi matematike, ne mogu da se oduprem
utisku qu±eǌa izra¼enog pitaǌem: zar je mogu²e da pored bogatstva, cijelog
spektra razliqitih elegantnih, jednostavnih i lijepih dokaza ovih teorema, ni-
jedan od ǌih nije pronaxao svoje ,,mjesto pod suncem“ nekog modernog u­benika
matematike. Ako je to tako, a tako je, kada su u pitaǌu u­benici matematike za
sredǌe xkole i gimnazije, onda ne treba da nas qudi qiǌenica da je mali broj
nastavnika u neposrednoj nastavi spreman da nexto radikalnije mijeǌa, a kamoli
inovira. Me±utim, kada su uqenici u pitaǌu, oni su spremni i rado prihvata-
ju promjene u nastavi, posebno raznovrsnost pri objaxǌavaǌu (dokazivaǌu), tj.
inovirane, jednostavnije i ǉepxe prikazane matematiqke sadr¼aje.

Konkretno, kada je u pitaǌu nastava trigonometrije, ona se u gimnazijama
matematiqkog smjera realizuje u okviru teme Trigonometrijske funkcije (54 qa-
sa) u drugom razredu. Umjesto uobiqajenog dokaza iz u­benika uqenicima sam
primjenom Ptolemejeve teoreme izveo teoremu: Ako su α i β takvi uglovi da je
0 < α + β < π, tada je sin(α + β) = sin α cos β + sin β cos α. Na jednom od qasova
obradili smo klasiqni naqin dokazivaǌa, a nakon ǌega sam pokazao inovaciju ko-
rix²eǌem polazne ideje o jediniqnom rombu. Uqenicima se dopala jednostavnost
ovoga dokaza koji neposredno proistiqe primjenom razlo¼ive jednakosti povrxi-
ne romba sa dva para podudarnih trouglova i jednim pravougaonikom (slika 24).
Tako da su sami u svoje sveske odmah napisali sin(α + β) = P i

P = cos β sin β + cosα sin α + (sin α− sinβ)(cos β − cosα)
= sin α cos β + sin β cosα,

odakle slijedi polazno tvr±eǌe. Uqenici su kroz uvje¼bavaǌe u poqetku polusa-
mostalno, a potom samostalno jedno-
stavnim transformacijama izvodili
ostale adicione formule. Pokazavxi
im kako se na drugaqiji naqin od ono-
ga na koji su je oni izveli mo¼e doka-
zati teorema o transformaciji zbira
kosinusa u proizvod zahtijevao sam
da pogodnim transformacijama, ko-
rix²eǌem dokazane teoreme izvedu
sve adicione teoreme.

Sl. 24

Prezentovana na ovaj naqin priqa o adicionim teoremama se prolongirala
za jedan do dva qasa. Me±utim, iako se broj ovih qasova pove²ao na uxtrb qaso-
va uvje¼bavaǌa, efekti takve nastave ogledali su se kako u boǉem razumjevaǌu
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i usvajaǌu pre±enih sadr¼aja, tako i u znatnom pove²aǌu interesovaǌa i ak-
tivnosti uqenika na qasovima matematike, sa posebnom te¼ǌom ka samostalnom,
kreativnom radu. Poliformne geometrijske interpretacije izvo±eǌa adicionih
formula svojom integralnox²u i ,,bǉeskom“ kompletne jasno²e kao neposrednu
posǉedicu imale su stvaraǌe trajnih znaǌa kod uqenika, xto sam uoqio prov-
jerom ǌihovih znaǌa na qasovima godixǌe sistematizacije gradiva nekoliko
mjeseci kasnije. Ono xto me je posebno iznenadilo u pozitivnom smislu je ne
samo to xto su svi uqenici znali bar jedan dokaz ovih teorema, nego i to xto je
ve²ina ǌih znala i taj reverzibilni postupak dokazivaǌa ovih teorema o kojim
je bilo rijeqi. Po meni, bila je to jox jedna u nizu praktiqnih potvrda da je
poliformnost geometrijskih interpretacija zaqiǌenih inovacionim elementi-
ma svojim dinamiqkim pristupom, tj. kompletnim sagledavaǌem i razumijevaǌem
datih problema uqenicima omogu²ila da jasnije proniknu u suxtinu problema
odvikavaju²i ih od xablonskog rjexavaǌa zadataka i samim tim znaqajno dopri-
nijela stvaraǌu trajnih znaǌa.

Do ve²ine poliformnih geometrijskih tumaqeǌa objavǉenih u metodiqkom
priruqniku [12], od kojih je neznatan dio prethodni tekst, doxao sam tokom vi-
xegodixǌeg rada u nastavi sredǌih struqnih xkola i gimnazije, primjeǌuju²i
i stalno provjeravaju²i efekte ǌihovog dejstva na pove²aǌe intenziteta dina-
mizma procesa uqeǌa matematike. Nakon tih eksperimentalnih provjera u svim
sluqajevima postalo mi je jasno da efekti takve metodologije indukuju dinamiq-
ki pristup sveobuhvatnog sagledavaǌa problema xto implikuje ra±aǌe trajnih
znaǌa.

Dakle, na osnovu sopstvenog iskustva i eksperimentalnih provjera u nepo-
srednoj nastavi uoqio sam da modernizovana heuristiqka metoda Georga Poje u
svijetlu poliformnih geometrijskih tumaqeǌa daje izvanredne rezultate u pro-
cesu usvajaǌa matematiqkih sadr¼aja, posebno onda ako su joj dodati inovacioni
elementi.
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