
ZADACI IZ MATEMATIKE

Dr Xefket Arslanagi�

DVA DOKAZA JEDNE ALGEBARSKE
NEJEDNAKOSTI SA KORJENIMA

Rijeq je o nejednakosti sa 40. matematiqke olimpijade u Poǉskoj a koja glasi
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, a, b, c, d > 0.

Oqigledno, radi se o oxtroj nejednakosti. Evo zaxto. Imamo zbog poznate
nejednakosti A > G:
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Odavde korjenovaǌem dobijamo nejednakost
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No, sada ²emo dokazati da va¼i nejednakost

(3)
a + b + c + d

4
>

√
ab + ac + ad + bc + bd + cd

6
.

Nakon kvadriraǌa nejednakosti (3) dobijamo:
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⇐⇒ 3(a2 + b2 + c2 + d2)− 2(ab + ac + ad + bc + bd + cd) > 0

⇐⇒ (a− b)2 + (a− c)2 + (a− d)2 + (b− c)2 + (b− d)2 + (c− d)2 > 0,

xto je taqno. Vrijedi jednakost ako i samo ako je a = b = c = d.
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Dakle, nejednakost (3) je taqna. Me±utim, iz nejednakosti (2) i (3) ne sli-
jedi data nejednakost (1).

Sada ²emo dati dva interesantna i neuobiqajena dokaza date nejednako-
sti (1).

Dokaz 1. Uzmimo da je

A = a + b + c + d; B = ab + ac + ad + bc + bd + cd;
C = abc + abd + acd + bcd; D = abcd.

Sada se data nejednakost mo¼e napisati u obliku
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Neka je sada

B1 = ab + cd, B2 = ac + bd, B3 = ad + bc.

Imamo B = B1 + B2 + B3, te

(4) B1B2B3 = (ab + cd)(ac + bd)(ad + bc) = Q + R,

gdje je

Q = a2b2c2 + a2b2d2 + a2c2d2 + b2c2d2,

R = a3bcd + ab3cd + abc3d + abcd3.

Daǉe imamo

C2 = (abc + abd + acd + bcd)2

= Q + 2(a2b2cd + a2bc2d + ab2c2d + a2bcd2 + ab2cd2 + abc2d2)
= Q + 2BD,

tj.
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Iz poznate nejednakosti
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tj.
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Q > D(bd + ac) i sada R +
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Q > D(ab + bc + cd + ad) + D(bd + ac), tj.

(6) R +
1
2
Q > BD.

Sada imamo iz nejednakosti izme±u aritmetiqke i geometrijske sredine tri po-
zitivna borja i (4), (5), (6):
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xto je trebalo dokazati.

Vrijedi jednakost ako i samo ako je a = b = c = d.

Dokaz 2. Neka A, B, C, D imaju znaqeǌe kao u prethodnom dokazu. Tada su
−a, −b, −c, −d nule polinoma (Vietove formule)

P (t) = t4 + At3 + Bt2 + Ct + D.

Prema Rolovoj teoremi moraju zbog egzistencije qetiri nule polinoma P (t) po-
stojati tri realne vrijednosti −u, −v, −w 6 0, tj. u, v, w > 0 tako da je

P ′(t) = 4t3 + 3At2 + 2Bt + C = 4(t + u)(t + v)(t + w),

tj.
P ′(t) = 4t3 + 4(u + v + w)t2 + 4(uv + vw + uw)t + 4uvw.

Dakle,
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nejednakosti A > G imamo
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, xto smo u prethodnom dokazu vidjeli da je ekviva-

lentno nejednakosti koju dokazujemo.

Napomena redakcije. Data nejednakost se mo¼e dokazati i pomo²u Mjur-
hedove nejednakosti, jer se svodi na 5T [2, 2, 2, 0] + 12T [2, 2, 1, 1] 6 T [3, 3, 0, 0] +
12T [3, 2, 1, 0]+4T [3, 1, 1, 1] (videti, na primer, svesku 42 edicije ,,Materijali za
mlade matematiqare“ Druxtva matematiqara Srbije).


