
NASTAVA RAQUNARSTVA

Milan Qabarkapa

KONSTRUKTORI I DESTRUKTORI

Za poǉa objekta je prirodno oqekivati, da budu inicijalizovana pre nego
xto poqnu da se koriste. Poxto je inicijalizacija objekta neophodna, C++ obez-
be±uje da se to realizuje automatski pri ǌegovom kreiraǌu. Automatska inici-
jalizacija se realizuje korix²eǌem metode klase koju nazivamo konstruktor
(constructor). Ovim se obezbe±uje jedan od osnovnih principa objektno orijen-
tisanog programiraǌa: svi objekti moraju biti samodovoǉni, tj. u potpunosti
opslu¼ivati same sebe.

Konstruktor je specijalna metoda, koja je qlan klase i ima isto ime kao
klasa. Od obiqne metode se razlikuje po tome xto ne vra²a vrednost. Zato se
ne navodi tip koji vra²a (qak ni void). Kompajler nepogrexivo pronalazi ovaj
metod jer mu se ime poklapa sa imenom klase. Na primer, klasa tacka se mo¼e
opisati na slede²i naqin:

#include <iostream.h>

class tacka

{
double x, y; // podaci - podrazumevajuce skriveni (private)

public: // javni deo - dostupan u svim delovima programa

tacka(); // konstruktor

void translacija(double dx, double dy)

{ x+=dx; y+=dy; }
void pozicija()

{cout << "x=" << x <<" " << "y=" << y << endl;}
};

Opis konstruktora tacka() mo¼e se dati sa:

tacka :: tacka()

{
x=0;

y=0;

cout << "Tacka je inicijalizovana" << endl;

}

Poruka "Tacka je inicijalizovana" je ukǉuqena da bi se pokazalo da kon-
struktor radi. U ve²ini sluqajeva konstruktor ne daje nikakvo saopxteǌe.



Konstruktori i destruktori 31

Metoda-konstruktor se poziva u momentu kada se kreira objekat, tj. kada mu
se dodeli memorijski prostor. Za globalne objekte konstruktor se poziva samo
jedanput – pri kreiraǌu objekta na poqetku izvrxavaǌa programa. Za lokalne
objekte konstruktor se poziva pri ulasku u blok u kome je definisan objekat.
Konstruktor se ne mo¼e pozvati eksplicitno (npr. za objekat t sa t.tacka()).
Konstruktor, kao i druge metode, mo¼e imati parametre, mo¼e biti preopte-
re²ena metoda, tj. klasa mo¼e imati nekoliko konstruktora. Ako u klasi nije
opisan nijedan konstruktor, kompajler sam generixe podrazumevaju²i konstruk-
tor.

Ako prethodnu klasu testiramo sa:

tacka t; // globalna promenljiva

void main()

{
tacka t1;

t1.translacija(5.5,5.5); // translacija tacke

t1.pozicija(); // ispis polozaja tacke

tacka t2;

t2.translacija(10,10); // translacija tacke

t2.pozicija(); // ispis polozaja tacke

}

ispisuje se:

Tacka je inicijalizovana

Tacka je inicijalizovana

x=5.5 y=5.5

Tacka je inicijalizovana

x=10 y=10

gde prva poruka: "Tacka je inicijalizovana" nastaje aktiviraǌem konstruk-
tora pri kreiraǌu globalnog objekta t (koji se daǉe u programu ne koristi).
Slede²e dve poruke nastaju pri kreiraǌu objekata t1 i t2.

Postoji jox jedna specijalna metoda klase – destruktor (destructor). Vrlo
qesto je neophodno da se odrade neke zavrxne aktivnosti pre nego xto se obje-
kat ukloni iz memorije. To mo¼e biti osloba±aǌe memorije koju zauzima neka
dinamiqki kreirana struktura koju sadr¼i objekat, restauracija ekrana, zatva-
raǌe fajlova itd. U C++ takve aktivnosti izvrxava funkcija koja se naziva
destruktor. Pri uklaǌaǌu objekta iz memorije treba da oslobodi i memori-
ju koju zauzimaju ǌegova poǉa. Dakle, pri kreiraǌu objekta i odvajaǌu ǌemu
odgovaraju²eg memorijskog prostora poziva se konstruktor, dok pri osloba±aǌu
memorijskog prostora dodeǉenog objektu poziva se destruktor. On se skoro nikad
ne poziva eksplicitno, iako za razliku od konstruktora takav poziv je dozvoǉen.
Uvek se pozivaju automatski kada prestaje biti aktivan blok u kome su kreirani
objekti. Tako±e se pozivaju pri pozivu operatora delete za pokazivaq na objekat
koji ima destruktor.



32 M. Qabarkapa

Destruktor predstavǉa metodu qije je ime isto kao ime klase, samo xto se
ispred imena destruktora navodi znak tilda (∼). Destruktor ne vra²a vrednost
(qak ni void) i ne mo¼e imati parametre.

Slede²i primer treba da ilustruje da se destruktor poziva automatski
kada se napuxta blok u kome su definisani objekti. S tim ciǉem je predvi±eno
ispisivaǌe poruke "Tacka je uklonjena" pri uklaǌaǌu objekata. Redosled
uklaǌaǌa je po LIFO principu, objekat koji je posledǌi kreiran bi²e prvi koji
se uklaǌa. Izvrxavaǌem programa:

#include <iostream.h>

class tacka

{
double x, y; // podaci - podrazumevajuce skriveni (private)

public: // javni deo - dostupan u svim delovima programa

tacka(); // konstruktor

∼tacka(); // destruktor

void translacija(double dx, double dy)

{ x+=dx; y+=dy; }
void pozicija() cout << "x=" << x <<" " << "y=" << y << endl;

};
tacka :: tacka()

{
x=0;y=0;

cout << "Tacka je inicijalizovana" << endl;

}
tacka :: ∼tacka()
{ cout << "Tacka je uklonjena!" << endl; }

tacka t;

void main()

{
tacka t1;

t1.translacija(5.5,5.5); // translacija tacke

t1.pozicija(); // ispis polozaja tacke

tacka t2;

t2.translacija(10,10); // translacija tacke

t2.pozicija(); // ispis polozaja tacke

}

ispisuje se:

Tacka je inicijalizovana

Tacka je inicijalizovana

x=5.5 y=5.5

Tacka je inicijalizovana

x=10 y=10

Tacka je uklonjena!



Konstruktori i destruktori 33

Tacka je uklonjena!

Tacka je uklonjena!

Konstruktor globalnog objekta se poziva pre funkcije main(), a destruktor
po izlasku iz funkcije main().

Konstruktor s parametrima

U prethodnim primerima videli smo kako se kreira konstruktor bez pa-
rametara koji se naziva podrazumevaju²i konstruktor (default constructor).
Me±utim, u praksi je qesto neophodno da se poǉa objekta inicijalizuju od-
re±enim konkretnim vrednostima. Takvu mogu²nost u C++-u pru¼a konstruktor
s parametrima koji se naziva konstruktor inicijalizacije (initialized con-
structor) koji je oblika:

ime konstruktora(spisak parametara) telo konstruktora

Konstruktor bez parametara (ili sa svim parametrima, koji dobijaju pod-
razumevaju²e vrednosti) naziva se podrazumevaju²i konstruktor (default con-
structor) i igra vrlo va¼nu ulogu. Prvo – on se koristi za inicijalizaciju
objekta kada nisu zadati parametri inicijalizacije, drugo – ovim konstrukto-
rom se inicijalizuje svaki element niza objekata (jer nije mogu²a pojedinaqna
inicijalizacija elemenata).

Klasu tacka ²emo modifikovati tako xto ²emo umesto konstruktora bez
parametara opisati konstruktor sa podrazumevaju²im parametrima:

#include <iostream.h>

class tacka

{
double x, y; // podaci - podrazumevajuce skriveni (private)

public: // javni deo - dostupan u svim delovima programa

tacka(double, double); // konstruktor

∼tacka(); // destruktor

void translacija(double dx, double dy) x+=dx; y+=dy;

void pozicija() cout << "x=" << x <<" " << "y=" << y << endl;

};
tacka :: tacka(double x1=0.0, double y1=0.0)

{
x=x1;y=y1;

cout << "Tacka je inicijalizovana" << endl;

}
tacka :: ∼tacka()
{ cout << "Tacka je uklonjena!" << endl; }

Ovako opisan konstruktor mo¼e se iskoristiti za inicijalizaciju objekta
na dva naqina. Prvi naqin:

ime klase ime objekta=ime konstruktora(spisak stvarnih parametara);



34 M. Qabarkapa

Na primer, objekat t1 tipa tacka mo¼e se inicijalizovati pri kreiraǌu sa:
tacka t1=tacka(1.5,2.5);

Ovaj se oblik retko koristi, jer postoji kra²i, u smislu zapisa:
ime klase ime objekta(spisak stvarnih parametara);

Prema ovom opisu mo¼e se dati deklaracija ekvivalentna prethodnoj sa:
tacka t1(1.5,2.5);

Poxto je konstruktor sa podrazumevaju²im parametrima (0,0), ako se objekat
definixe sa:

tacka t1(1.5);

inicijalizacija je: x=1.5 i y=0.0. Sada je trenutak da se skrene pa¼ǌa na
jedan neoqekivan ,,rezon“ kompajlera. Ako u prethodnom opisu konstruktora pa-
rametri nisu podrazumevaju²i, tada ni on ne²e imati status podrazumevaju²eg
konstruktora. Zato za deklaraciju

tacka t;

kompilacija ne²e pro²i glatko. Ovde ²ete prirodno postaviti pitaǌe: zaxto
kompajler koji je pre nego xto ste sami opisivali funkcije-konstruktore auto-
matski inicijalizovao objekat, to ne bi uradio i sada? Me±utim, sada kada
Vaxa klasa poseduje konstruktor on ovako nexto ne²e mo²i da ,,svari“. Dok ste
imali klase bez konstruktora, kompajler je takve klase tretirao ,,siromaxnim“
pa im je davao ,,socijalnu pomo²“, tj. specijalni konstruktor koji se korektno
pozivao pri svakom definisaǌu objekta.

Sada, kada kompajler vidi bar jedan konstruktor, on smatra da klasa mo¼e
brinuti sama o sebi, tako da oqekuje odgovaraju²i konstruktor koji ²e prihvati-
ti ovaj sluqaj. Me±utim, konstruktor bez podrazumevaju²ih parametara, ako pri
deklarisaǌu objekta t nisu zadati parametri ne²e odraditi inicijalizaciju.

Napomena. Svi objekti C++ imaju konstruktore, qak i primitivni kao xto
su celobrojne promenǉive (tipa int). Zbog toga se poqetna vrednost promenǉive
mo¼e zadati unutar zagrada, jer i ona kao i svaki objekat ima konstruktor. Na
primer:

int i(5);

Primer 1. Opisati klasu koja sadr¼i stek realizovan nizom znakova qija
se du¼ina zadaje dinamiqki u toku izvrxavaǌa programa. Klasa treba da sadr¼i
metode:
• stack – konstruktor sa podrazumevaju²im parametrom (du¼ina niza);
• stack – konstruktor inicijalizacije stringom zadate du¼ine;
• reset – prazni stek;
• push – stavǉa znak u stek;
• pop – uzima vrednost sa vrha steka;
• top of – vra²a vrednost s vrha steka;
• empty – proverava da li je stek prazan;



Konstruktori i destruktori 35

• full – proverava da li je stek pun.

Napisati program koji demonstrira korix²eǌe klase.

U slede²oj klasi prema zahtevima zadatka metode top of() i empty() i
full() ne meǌaju objekat – stek. Zato im se dodeǉuje specifikator const.

#include <stdio.h>

enum EMPTY=-1;

class stack

{
char *s; // pokazivac na niz char duzine max len

int max len;

int top; // indeks elementa na vrhu steka

public:

stack (int size=100) // podrazumevajuci konstruktor

{ s=new char[size]; max len=size; top=EMPTY;}
stack (int size, const char str[]);

∼stack() { delete [] s;} // destruktor

void reset() { top=EMPTY; }
void push(char x) { s[++top]=x; }
char pop() { return s[top--]; }
char top of() const { return s[top]; }
int empty() const { return (top==EMPTY); }
int full() const { return (top==max len-1); }

};

Prvi konstruktor

stack (int size=100)

{
s=new char[size];

max len=size;

top=EMPTY;

}

koji sadr¼i podrazumevaju²e parametre, aktivira se kod slede²ih deklaracija:

stack d; // rezervise memoriju za niz od 100 elemenata

stack s(1000); // rezervise prostor za niz od 1000 elemenata

stack q(2*n); // rezervise prostor za niz od 2*n elemenata

stack r[n]; // kreira n praznih stekova sa nizovima od 100 elemenata

Drugi konstruktor, rezervixe prostor za stek veliqine size elemenata, koje
inicijalizuje znacima stringa str[]:

stack :: stack(int size, const char str[])

{
s=new char[size];

max len=size;



36 M. Qabarkapa

for (int i=0; i<max len && str[i] !=NULL; i++)

s[i]=str[i];

top=--i;

}

Destruktorom

∼stack() { delete [] s;} // destruktor

se pre uklaǌaǌa objekta osloba±a memorijski prostor dodeǉen nizu s. Slede²i
program testira klasu:

#include <stdio.h>

void main()

{
// test 1 - poziva podrazumevajuci konstruktor, kreira niz od 100 znakova

stack s;

char x;

printf(" Unesi niz znakova (EOF - Ctrl/Z za kraj)--> ");

s.reset();

while (!s.full())

if ((x=getchar())!=EOF)

s.push(x);

else break;

printf("\n\nSadrzaj steka je: ");

while (!s.empty())

printf("->%c",s.pop());

printf("\n");
// test 2 - poziva konstruktor inicijalizacije

stack w(4, "ABCD");

while (!w.empty())

printf("->%c",w.pop());

printf("\n");
}


