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Quvena Vajerxtrasova teorema [4] tvrdi da se svaka neprekidna funkcija
na zatvorenom intervalu mo¼e ravnomerno aproksimirati polinomima. Za ovu
teoremu postoji vixe dokaza i razliqitih uopxteǌa. Ovde ²e biti izlo¼en
Bernxtajnov [2] probabilistiqki dokaz te teoreme. Tako±e ²e biti data, sa
dokazom, veoma lepa i interesantna Korovkinova teorema [3] o konvergenciji
pozitivnih linearnih operatora, iz koje se kao jednostavna posledica dobija
Vajerxtrasova teorema. Dokaz Korovkinove teoreme se izvodi po analogiji sa
Bernxtajnovim dokazom Vajerxtrasove teoreme. Ova Korovkinova teorema je
privukla pa¼ǌu mnogih matematiqara i doxlo je do razvoja obimnog poglavǉa
u teoriji aproksimacija [1] baziranog na toj teoremi. Ono xto je ovde posebno
zanimǉivo je qiǌenica, koja ²e se videti, da veza izme±u analize i stohastike
nije jednosmerna. Poznato je da se stohastika bazira na analizi, a ovde imamo
divan primer da se teorema analize mo¼e izuzetno elegantno dokazivati uz pomo²
stohastike.

Teorema 1 (Vajerxtras). Neka je f realna neprekidna funkcija defini-
sana na odseqku [a, b]. Tada za svako ε > 0 postoji takav polinom P (x), da
va�i

|f(x)− P (x)| < ε,

za svako x ∈ [a, b].
Dokaz (Bernxtajn). Dovoǉno je dokazati teoremu za sluqaj kada je f de-

finisana na odseqku [0, 1]. Zaista, linearnom smenom argumenta prelazi se sa
funkcije f definisane na odseqku [a, b] na funkciju g(x) = f(a + x(b− a)) defi-
nisanu na [0, 1] i obratno.

Neka je f neprekidna funkcija definisana na intervalu [0, 1]. Polinom

Bn(f, p) =
n∑

k=0

f

(
k

n

) (
n

k

)
pk(1− p)n−k, 0 ≤ p ≤ 1 (1)

zove se Bernxtajnov polinom funkcije f , a Bn se zove Bernxtajnov operator.
Pokaza²emo da va¼i

lim
n→∞

max
0≤p≤1

|f(p)−Bn(f, p)| = 0.
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Oznaqimo sa X sluqajnu promenǉivu sa binomnom raspodelom B(n; p), to jest
P{X = k} =

(
n
k

)
pk(1 − p)n−k, k = 0, 1, . . . , n. ǋeno oqekivaǌe i disperzija su

EX = np, DX = np(1− p). Imamo da je Bn(f, p) = E(f(X/n)).
Ako sa Sn oznaqimo sumu Sn = Y1+Y2+· · ·+Yn, gde sluqajne promenǉive Yj ,

j = 0, 1, . . . , n, imaju Bernulijevu raspodelu, P{Yj = 0} = 1− p; P{Yj = 1} = p,
tada ǌihova suma Sn ima binomnu raspodelu B(n; p).

Poxto va¼i Bernulijev zakon velikih brojeva, imamo da je

lim
n→∞

P

{∣∣∣∣
Sn

n
− p

∣∣∣∣ > ε

}
= 0,

a poxto je f neprekidna funkcija, onda ²e i f(Sn/n) biti blisko f(p) za dovoǉno
veliko n.

Funkcija f je neprekidna na zatvorenom intervalu [0, 1], pa je ona na ǌemu
ravnomerno neprekidna tj. va¼i da za svako ε > 0 postoji δ > 0 takvo da je
|f(x)−f(y)| ≤ ε za |x−y| ≤ δ, x, y ∈ [0, 1]. Osim toga, funkcija f je i ograniqena,
tj. postoji konstanta M takva da je |f(x)| ≤ M za 0 ≤ x ≤ 1. Koriste²i te
qiǌenice, dobijamo slede²e ocene

|f(p)−Bn(f, p)| =
∣∣∣∣∣

n∑

k=0

(
f(p)− f

(
k

n

))(
n

k

)
pk(1− p)n−k

∣∣∣∣∣

≤
∑

{k:| k
n−p|≤δ}

∣∣∣∣f(p)− f

(
k

n

)∣∣∣∣
(

n

k

)
pk(1− p)n−k

+
∑

{k:| k
n−p|>δ}

∣∣∣∣f(p)− f

(
k

n

)∣∣∣∣
(

n

k

)
pk(1− p)n−k ≤

≤ ε + 2MP

{∣∣∣∣
Sn

n
− p

∣∣∣∣ > δ

}

(koristimo Qebixevǉevu nejednakost)

≤ ε + 2Mp(1− p)n−1δ−2

(koristimo da je p(1− p) ≤ 1/4 za 0 ≤ p ≤ 1)

≤ ε + M2−1n−1δ−2.

Dakle, dokazano je da

lim
n→∞

max
0≤p≤1

|f(p)−Bn(f, p)| = 0.

Ovaj dokaz daje eksplicitno polinome kojima se vrxi aproksimacija nepre-
kidnih funkcija a tako±e i ocenu brzine konvergencije.

Osim Bernxtajnovog operatora Bn (1), koji je konstruisan na osnovu bino-
mne raspodele, u literaturi su razmatrani i drugi operatori probabilistiqkog
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tipa, konstruisani na osnovu drugih raspodela. Ovde ²emo da navedemo neke od
tih operatora.

1) Meyer-König i Zeller : Rn : C[0, 1] → C[0, 1],

Rn(f)(x) := (1− x)n+1
∞∑

k=0

f

(
k

n + k

)(
n + k

k

)
xk, x ∈ [0, 1].

2) Kantoroviq: Un : L1[0, 1] → C[0, 1],

Un(f)(x) :=
n∑

k=0

(n + 1)

(∫ k+1
n+1

k
n+1

f(t)dt

) (
n

k

)
xk(1− x)n−k, x ∈ [0, 1].

3) Bernstein-Durrmeyer : Dn : L1[0, 1] → C[0, 1],

Dn(f)(x) := (n+1)
n∑

k=0

(∫ 1

0

(
n

k

)
tk(1− t)n−kf(t)dt

)(
n

k

)
xk(1−x)n−k, x ∈ [0, 1].

4) Szász-Mirakjan: Mn : C[0,∞) → C[0,∞),

Mn(f)(x) := exp(−nx)
∞∑

k=0

f

(
k

n

)
nkxk

k!
, x ≥ 0.

5) Baskakov: An : C[0,∞) → C[0,∞),

An(f)(x) := (1 + x)−n
∞∑

k=0

f

(
k

n

) (
n + k − 1

k

)(
x

1 + x

)k

=
∞∑

k=0

f

(
k

n

)(−n

k

)
(−x)k(1 + x)−n−k, x ≥ 0.

Postoji opxirna literatura u kojoj se dokazuje aproksimaciono svojstvo
gorǌih operatora, analogno aproksimacionom svojstvu Bernxtajnovog operato-
ra. Koriste²i slede²u Korovkinovu teoremu, koja se odnosi na pozitivne li-
nearne operatore, mo¼e se dokazati aproksimaciono svojstvo tih operatora,
ukǉuquju²i i Bernxtajnov.

Teorema 2 (Korovkin). Neka je An : C[a, b] → C[a, b] niz linearnih pozi-
tivnih operatora (Anx ≥ 0 za x ≥ 0). Ako va�i An(ei) → ei, n → ∞, za
svako i = 0, 1, 2, gde je ei(t) = ti, tada je limn→∞An(x) = x za svako x ∈ C[a, b].
(Ovde se podrazumeva konvergencija u smislu metrike prostora C[a, b], tj.
uniformna konvergencija funkcija.)

Dokaz. Zbog uniformne neprekidnosti za svako x ∈ C[a, b] i svako ε > 0
postoji takvo δ > 0, da je |x(t) − x(τ)| < ε za t, τ ∈ [a, b] koji zadovoǉavaju
nejednakost |t− τ | < δ.
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Tako±e va¼i da je |x(t)− x(τ)| ≤ 2m za svako t, τ ∈ [a, b], gde je m = ‖x‖ =
supa≤t≤b |x(t)|. Kada je |t− τ | > δ, imamo

|x(t)− x(τ)| ≤ 2m ≤ 2m|t− τ |2δ−2.

Dakle, za svako t, τ ∈ [a, b] va¼i

|x(t)− x(τ)| ≤ ε + 2m|t− τ |2δ−2 = ε + 2mδ−2(t2 − 2tτ + τ2).

Fiksirajmo τ ; tada dobijamo

|x− x(τ)e0| ≤ εe0 + 2mδ−2(e2 − 2e1τ + τ2e0).

Korix²eǌem linearnosti, dobijamo ocenu:

|Anx− x(τ)Ane0| = |An(x− x(τ)e0)| ≤ An|x− x(τ)e0|
≤ εAne0 + 2mδ−2(Ane2 − 2τAne1 + τ2Ane0). (2)

Prethodno va¼i za svako t, pa i za t = τ . Zato imamo:

|Anx(τ)− x(τ)Ane0(τ)| ≤
≤ εAne0(τ) + 2mδ−2(Ane2(τ)− 2e1(τ)Ane1(τ) + e2(τ)Ane0(τ)). (3)

Supremum leve strane u formuli (3) je:

sup
a≤τ≤b

|Anx(τ)− x(τ)Ane0(τ)| = sup
a≤τ≤b

|(Anx− xAne0)(τ)| = ‖Anx− xAne0‖.

Desnu stranu nejednakosti (3) mo¼emo majorirati na slede²i naqin:

εAne0(τ) + 2mδ−2(Ane2(τ)− 2e1(τ)Ane1(τ) + e2(τ)Ane0(τ)) =

= εAne0(τ) + 2mδ−2(Ane2 − 2e1Ane1 + e2Ane0)(τ) ≤
≤ ε‖Ane0‖+ 2mδ−2‖Ane2 − 2e1Ane1 + e2Ane0)‖.

Sledi da je

‖Anx− xAne0‖ ≤ ε‖Ane0‖+ 2mδ−2‖Ane2 − 2e1Ane1 + e2Ane0‖.
Dakle imamo da je lim sup ‖Anx − xAne0‖ ≤ ε, ∀ε > 0. Odatle sledi Anx −
xAne0 → 0. Poxto prema uslovu teoreme xAne0 → x, dobijamo da Anx → x,
n →∞, xto je i trebalo dokazati.

Jox samo mali komentar: u formuli (2) je korix²ena slede²a nejednakost
|An(x)| ≤ An|x| koja se mo¼e dokazati na slede²i naqin.

|An(x)| = |An(x+ − x−)| = |Anx+ −Anx−| ≤
≤ |Anx+|+ |Anx−| = Anx+ + Anx− = An(x+ + x−) = An|x|,

gde je x+ =
{

x, x ≥ 0
0, x < 0

, x− =
{ −x, x ≤ 0

0, x > 0
; x = x+−x−, |x| = x+ +x−. Time

je dokaz zavrxen.
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Iz Korovkinove teoreme sledi Vajerxtrasova teorema. Poka¼imo da Bern-
xtajnovi operatori

Bnx(t) =
n∑

k=0

(
n

k

)(
t− a

b− a

)k (
b− t

b− a

)n−k

x

(
a + k

b− a

n

)

zadovoǉavaju uslove Korovkinove teoreme. Oni su oqigledno linearni i pozi-
tivni. Poka¼imo jox da va¼i Bn(ei) → ei, n →∞, uniformno na [a, b] za svako
i = 0, 1, 2, gde je ei(t) = ti. Imamo:

Bne0(t) =
n∑

k=0

(
n

k

)(
t− a

b− a

)k (
b− t

b− a

)n−k

= 1;

Bne1(t) =
n∑

k=0

(
n

k

)(
t− a

b− a

)k (
b− t

b− a

)n−k (
a + k

b− a

n

)
= a +

b− a

n
n

t− a

b− a
= t;

Bne2(t) =
n∑

k=0

(
n

k

)(
t− a

b− a

)k (
b− t

b− a

)n−k (
a + k

b− a

n

)2

=

= a2 + 2a
b− a

n
n

t− a

b− a
+

(
b− a

n

)2
(

n
t− a

b− a
· b− t

b− a
+ n2

(
t− a

b− a

)2
)

=

= t2 +
(t− a)(b− t)

n
→ t2.
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