
NASTAVA RAQUNARSTVA

dr Sinixa Vlaji�, Bojan Tomi�

PRAKTIQNO TESTIRAǋE PROGRAMSKIH KLASA
ZASNOVANO NA PROVERI OGRANIQEǋA

Kratak pregled rada

U ovom radu je predstavǉen jedan praktiqan postupak za funkcionalno te-
stiraǌe programskih klasa koji je prvenstveno nameǌen uqenicima, studentima,
istra¼ivaqima i svima koji se ne bave testiraǌem profesionalno. Na poqetku
rada se nalazi uvod koji opisuje va¼nost testiraǌa programa uopxte. Rad se
nastavǉa definicijom testiraǌa programa i klasifikacijom testova. Predmet
i ciǉevi rada su opisani u narednom poglavǉu. Centralni deo rada sadr¼i
detaǉan opis predlo¼enog postupka, ǌegove strukture, redosleda koraka i poka-
zateǉa uspexnosti, kao i kratku napomenu o praktiqnoj primeni. Na kraju rada
se nalazi zakǉuqak u kome je opisano xta je postignuto i koji su mogu²i daǉi
pravci istra¼ivaǌa.

Uvod

Razvoj raqunara i raqunarskih tehnologija je doveo do velikih promena u
svim sferama ¼ivota. Upravo najve²i uticaj ovog razvoja se mo¼e videti u
oblasti nauke. Nauqna istra¼ivaǌa, velika ili mala, zavise od raqunara u
mnogim svojim fazama: prikupǉaǌe podataka, modeliraǌe, simulacija, obrada
podataka, potvrda ili opovrgavaǌe hipoteza, formiraǌe izvextaja itd. Zbog
toga, qesta je situacija da upravo nauqnici i istra¼ivaqi razvijaju ili meǌaju
programe koji su im potrebni za obavǉaǌe istra¼ivaǌa.

Me±utim, tu postoji jedan veliki problem. Oblast testiraǌa i kontro-
le kvaliteta programa uopxte nije na odgovaraju²i naqin regulisana. Qak je
i u domenu poslovnih aplikacija ista situacija. Standardi postoje (npr. ISO
9126 [4]) ali nisu prihva²eni, a isto je i sa postupcima i regulativama ko-
ji se tiqu kvaliteta programa. Posledica je ta da se programi kontrolixu i
testiraju neredovno, nesistematiqno i bez ikakvog plana pa qesto imaju slabe
performanse, slabu pouzdanost, ne pru¼aju tra¼enu funkcionalnost, texki su
za odr¼avaǌe i nadogradǌu ili su komplikovani za upotrebu.

Ali, ne mora da bude tako. Testiraǌe programa mo¼e da pomogne da se neki
od ovih problema prevazi±u. Dodatno vreme koje je utroxeno na testiraǌe ²e
svakako biti vra²eno zbog smaǌenog vremena potrebnog da se otklone grexke ili
pove²aju performanse.



40 S. Vlaji², B. Tomi²

Ako se prihvati qiǌenica da je testiraǌe programa neophodno, otvara se
pitaǌe kako bi to trebalo raditi. Da bi rezultati testiraǌa bili dobri,
testiraǌe mora da se vrxi organizovano i sistematiqno. Drugim reqima, po-
treban je jedan dobar postupak za testiraǌe kojim bi se odredile faze testiraǌa
i ǌihov redosled, predmet i struktura testova, ǌihov broj, redosled pisaǌa i
kriterijumi koji se odnose na pokrivenost testovima.

Ovakvi postupci ve² postoje, ali su qesto previxe komplikovani za ko-
rix²eǌe, neintuitivni ili jednostavno neefikasni. Iako je ǌihova kompliko-
vanost mo¼da opravdana kada se radi o poslovnim aplikacijama, ovi postupci
su texko primenǉivi u ostalim sluqajevima. Da bi bio prihva²en, postupak za
testiraǌe bi morao biti sistematiqan, ali pre svega praktiqan. U ovom radu
se opisuje jedan takav postupak.

Testiraǌe programa

Testiraǌe programa je deo kontrole kvaliteta programa - proces koji ima
za ciǉ osiguraǌe potrebnog nivoa kvaliteta programa. Neke od definicija te-
stiraǌa programa su:

,,Testiraǌe programa (Software testing) se sastoji u dinamiqkoj proveri
ponaxaǌa programa izvo�eǌem konaqnog broja testova (koji su na odgovara-
ju�i naqin izabrani od beskonaqno mnogo mogu�ih testova) i upore�ivaǌem
sa oqekivanim ponaxaǌem programa.“ [1]

,,Testiraǌe programa (Software testing) je proces qijim izvrxavaǌem se
nastoji utvrditi korektnost, potpunost, bezbednost i kvalitet razvije-
nog programa. To je tehniqka istraga koju vrxe zainteresovana lica sa ci-
ǉem utvr�ivaǌa informacija koje prikazuju odnos nivoa postignutog kva-
liteta proizvoda u odnosu na �eǉeni kvalitet.“ [2]

Kvalitet programa se sastoji iz dve dimenzije: efektivnost i efikasnost.
Efektivnost se odnosi na to da li su korisniqki zahtevi na odgovaraju²i
naqin formulisani (da li zahtevi opisuju ono xto je korisniku potrebno). Pro-
ces provere efektivnosti programa zove se validacija. Efikasnost, sa druge
strane, podrazumeva da se zahtevima opisana funkcionalnost pru¼a na kvali-
tetan naqin (program radi brzo, pouzdano, nema grexke, lak je za odr¼avaǌe i
nadogradǌu i sl.). Proces provere efikasnosti programa zove se verifikacija.

Testiraǌe programa je verifikatorno sredstvo. Predmet testiraǌa je
efikasnost programa (a ne efektivnost). Testiraǌe ne mo¼e da obezbedi da
program radi ono xto bi trebalo jer se testovi pixu u skladu sa korisniqkim
zahtevom a, ako je zahtev loxe napisan, i program ²e biti lox u skladu sa tim.
Ni svi aspekti efikasnosti se ne mogu obezbediti testiraǌem. Primer za to
je jednostavnost odr¼avaǌa i nadogradǌe. Jedini naqin da se to obezbedi je
korix²eǌe uzora (software pattern) pri projektovaǌu programa ([6], [7]). Ono
xto testiraǌe mo¼e da obezbedi je da program kvalitetno (brzo i bez grexke)
radi ono xto je opisano u zahtevima.

Dva pojma se qesto pojavǉuju u kontekstu testiraǌa programa: programska
mana i programska grexka. Programska mana (software fault) je neki nedostatak



Praktiqno testiraǌe programskih klasa 41

koji program poseduje. Programska grexka (software failure) nastaje kada se
programska mana manifestuje. Drugim reqima, svaki program ima mane, ali se
samo neke od ǌih ispoǉavaju u vidu grexaka, a mnoge ne, pa ostanu neotkrivene.
Da bi se mana ispoǉila, potrebno je da se deo programa koji sadr¼i manu izvrxi.
Mane koje ostanu sakrivene, mogu da poqnu da se manifestuju kao grexke ako se
promeni softverska ili hardverska platforma na kojoj se izvrxava program.

Testiraǌe programa ima za zadatak da otkrije xto vixe programskih mana
na taj naqin xto ²e, izvrxavaǌem i proverom izvrxavaǌa xto vixe delova
programa, dovesti do ǌihovog manifestovaǌa u vidu grexaka. Ciǉ je da se,
otkrivaǌem i otklaǌaǌem mana, stvori odre±eni nivo sigurnosti da program
radi ono xto je opisano zahtevima.

Sami testovi se mogu klasifikovati na vixe naqina, ali je najpopularnija
klasifikacija prema vrsti zahteva na koji se odnose. Prema ovom kriterijumu,
testovi se dele na:

1. Testove za proveru funkcionalnosti - kojima se ispituje da li program
pru¼a funkcionalnost koja je opisana zahtevima. Znaqi, ovim testovima se
ne proverava brzina rada programa ili bezbednost ve² samo da li program
(ili neki ǌegov deo) bez grexke radi ono xto je opisano u funkcionalnim
zahtevima. Ovi testovi se daǉe dele prema veliqini dela programa na koji
se odnose na: pojedinaqne testove (unit test - odnose se na pojedinaqne klase),
integrativne testove (testiraǌe vixe klasa koje se me±usobno pozivaju u
radu), sistemske testove (testiraǌe celog programa od strane programera)
i testove prihvatǉivosti (acceptance test – testiraǌe celog programa od
strane krajǌeg korisnika).

2. Testove za proveru nefunkcionalnih karakteristika - ispituje se da li
su nefunkcionalni zahtevi ispuǌeni. Nefunkcionalni zahtevi se najqex²e
tiqu brzine rada ili skalabilnosti programa (mogu²nost opslu¼ivaǌa ve-
²eg broja korisnika istovremeno zadovoǉavaju²om brzinom), ali se mogu
ticati i: bezbednosti programa (security), interoperabilnosti, kompati-
bilnosti i drugih nefunkcionalnih karakteristika. Prema tome, ovi te-
stovi se daǉe dele na: testove optere²eǌa, testove preoptere²eǌa, testove
bezbednosti itd.
Pored ove klasifikacije, postoji i klasifikacija testova prema kriteri-

jumu poznavaǌa koda koji se testira. Prema ovom kriterijumu testovi se dele
na [3]:

1. Testove zasnovane na principu ,,crne kutije“ (black-box ) - ovi testovi
se pixu tako kao da se ne poznaje struktura koda koji se testira. Drugim
reqima, kod se posmatra kao crna kutija - za date ulaze se testiraju oqe-
kivani izlazi, dok se zanemaruje kako kod interno funkcionixe. Kada se,
na primer, testiraju klase testiraju se samo ǌihove javno dostupne metode.
Prednost ovog pristupa se sastoji u tome da promene interne strukture me-
toda ne utiqu na efektivnost testova. Mana ovog principa je u tome xto se,
zbog ,,nepoznavaǌa“ unutraxǌe strukture koda, mo¼e propustiti testiraǌe
nekog dela koda.



42 S. Vlaji², B. Tomi²

2. Testove zasnovane na principu ,,bele kutije“ (white-box - negde se pomiǌe
i kao pristup ,,staklene kutije“ tj. glass-box ) - testovi se pixu u skladu sa
strukturom koda koji se testira. Ovaj princip je obrnut u odnosu na prin-
cip crne kutije. Testira se sve: javni, privatni i zaxti²en kod. Testiraju
se i vrednosti privatnih promenǉivih, i algoritmi po kojima funkcionixu
metode. Prednost ovog pristupa je u tome xto se kao metrika mo¼e kori-
stiti pokrivenost testovima. Pokrivenost testovima (test coverage) je
pokazateǉ koji ukazuje na to koji je procenat izvornog koda pokriven bar
nekim testom. Xto je ova vrednost vixa, to je i boǉi rezultat testiraǌa.
Mana ovog pristupa je to xto je veliki deo testova neupotrebǉiv qim se kod
koji se testira promeni.

3. Testove zasnovane na principu ,,sive kutije“ (grey-box ) - princip ,,sive
kutije“ je negde izme±u prethodna dva principa. Ideja je u tome da se testovi
pixu kao da se koristi princip crne kutije (testiraju se iskǉuqivo javno
dostupne metode), ali da se koristi znaǌe o funkcionisaǌu koda koji se
testira. Na ovaj naqin se ostvaruju prednosti i izbegavaju mane prethodna
dva principa: testovi ostaju validni i ako se promeni neki deo koda, a kod
je boǉe istestiran jer se testovi pixu za situacije za koje se najvixe sumǌa
da ²e predstavǉati problem.
Problem sa kojim se qesto sre²u uqenici, istra¼ivaqi, nauqnici ili stu-

denti je taj da u trenutku kada je potrebno da testiraju program koji su razvili
nisu bax sigurni kako da to urade. Tada postaju aktuelna slede²a pitaǌa:
• Odakle bi trebalo poqeti sa testiraǌem?
• Xta bi sve trebalo da se proveri testovima?
• Koliko testova bi trebalo napisati?
• Kojim redosledom bi trebalo pisati testove?
• Koje klase (ili metode) se moraju testirati, a koje ne?

U nedostatku jasnog plana, neki ²e krenuti sa pisaǌem testova na osno-
vu intuicije i poznavaǌa koda, drugi ²e se osloniti na svoje iskustvo, ali je
qiǌenica da su ovi pristupi nesistematiqni, i ne pru¼aju odgovaraju²e rezul-
tate. Ono xto je potrebno je upravo jedan praktiqan postupak za testiraǌe.
Ovim postupkom bi se definisali koraci u procesu pisaǌa testova, ǌihova
me±uzavisnost i principi koje bi trebalo ispoxtovati.

Predmet i ciǉ rada

Predmet ovog rada je jedan praktiqan postupak za funkcionalno testi-
raǌe programskih klasa. U nedostatku ovakvog postupka, uqenici, studenti,
istra¼ivaqi i svi koji se ne bave profesionalno testiraǌem programa su pre-
puxteni sami sebi, jer su postupci koji su uglavnom zastupǉeni: komplikova-
ni, neintuitivni ili jednostavno nisu sistematiqni. S obzirom na to da je, u
principu, relativno jednostavno testirati performanse, bezbednost i druge ne-
funkcionalne karakteristike programa, postupak je usmeren ka funkcionalnom
testiraǌu. U posledǌe vreme programiraǌe se najqex²e obavǉa korix²eǌem



Praktiqno testiraǌe programskih klasa 43

objektno orijentisanih jezika pa je, radi jednostavnosti primene, za predmet
postupka uzeta osnovna gradivna jedinica - programska klasa.

Ciǉ rada je da se pru¼i postupak za funkcionalno testiraǌe klasa koji bi
bio:
• prilago�en uqenicima, studentima, istra�ivaqima i svima koji se
ne bave testiraǌem profesionalno;

• intuitivan i jednostavan za primenu;
• relativno nezavisan od konkretnih alata za testiraǌe ili tehnolo-
gija;

• sistematiqan i kompletan;
• pogodan za automatizaciju - u smislu generisaǌa i izvrxavaǌa testo-
va.

Postupak za funkcionalno testiraǌe programskih klasa

Prema prethodno navedenoj definiciji, funkcionalnim testovima se vrxi
provera funkcionalnosti koju pru¼a program. Ta funkcionalnost bi trebalo
da bude u skladu sa funkcionalnim zahtevima - koji opisuju xta bi program
trebalo da radi. Primer funkcionalnog zahteva je: ,,program bi trebalo da
omogu²ava izraqunavaǌe taqnog iznosa plate na osnovu unapred definisanog si-
stema bodovaǌa“. Postavǉa se pitaǌe: kako na sistematiqan i organizovan naqin
pretvoriti ove funkcionalne zahteve u skup odgovaraju²ih testova?

Ako se krene od toga da zahtevi, u stvari, odre±uju program, mo¼e se videti
slede²e. U poqetku, kada zahtevi jox ne postoje, program mo¼e da bude bilo kakav
i da radi bilo xta. Kada se neki od zahteva odrede, program ve² postaje blago
ograniqen u vezi sa tim xta radi i kako to radi. Definisaǌem svih zahteva,
program postaje jedna jasno ograniqena celina. Granice programa qine upravo
ti zahtevi (slika 1).

(a) Zahtevi jox nisu definisani (b) Zahtevi se definixu (v) Zahtevi su definisani

Sl. 1. Formiraǌe granica programa na osnovu zahteva

Funkcionalni zahtevi qine samo deo granica pa se mo¼e re²i slede²e: funk-
cionalni zahtevi su, u stvari, ograniqeǌa nad logiqkom strukturom i po-
naxaǌem programa. Pri tome, svaki zahtev se mo¼e posmatrati kao jedno ogra-



44 S. Vlaji², B. Tomi²

niqeǌe. U kontekstu testiraǌa, mo¼e se re²i da je za potpuno testiraǌe pro-
grama potrebno proveriti da li sistem zadovoǉava sva ograniqeǌa. U ovom
pristupu su identifikovane tri vrste ograniqeǌa koja nastaju na osnovu funk-
cionalnih zahteva:

1. Ograniqeǌa nad atributima (vrednosna ograniqeǌa) - utiqu na mogu²e
vrednosti atributa sistema.

2. Ograniqeǌa nad asocijacijama (strukturna ograniqeǌa) - odnose se na
asocijacije (veze) izme±u elemenata sistema, ǌihov referencijalni inte-
gritet i kardinalnosti.

3. Ograniqeǌa nad metodama (ograniqeǌa ponaxaǌa) - odnose se na metode
sistema i utiqu na ǌegovo ponaxaǌe.
Kada se ova ograniqeǌa prenesu na nivo pojedinaqnih elemenata programa

- konkretnih klasa, mo¼e se zakǉuqiti da upravo ona definixu svaku klasu tj.
ǌene atribute, asocijacije i metode (ponaxaǌe). Naravno, na svaku klasu se
odnosi samo odre±eni broj ograniqeǌa, a ne sva. Posle daǉe razrade, dobija se
kompletna klasifikacija ograniqeǌa nad klasom koja nastaju na osnovu funkci-
onalnih zahteva:

1. Ograniqeǌa nad atributima klase (vrednosna ograniqeǌa)
1.1. Ograniqeǌa tipa atributa - definixu tip vrednosti koje atribut

neke klase mo¼e da ima, npr. atribut ,,matični broj“ klase ,,Čovek“
mo¼e da ima samo vrednosti ,,int“ tipa.

1.2. Ograniqeǌa dozvoǉenog skupa vrednosti atributa - raspon vredno-
sti za neki konkretan atribut, npr. atribut ,,matični broj“ klase ,,Čo-
vek“ mora da bude broj od taqno trinaest cifara pri qemu vrednost
posledǌe cifre zavisi od prethodnih, a prvih sedam cifara definixe
neki datum. Vrednost ovog poǉa ne sme da se izostavi niti mo¼e da
bude maǌa od nule.

1.3. Ograniqeǌa na me�uzavisnosti vrednosti atributa jedne klase -
ova ograniqeǌa se odnose na zavisnost vrednosti nekog konkretnog atri-
buta u odnosu na vrednosti atributa iste klase. Postoje dve vrste ovih
ograniqeǌa:

1.3.1. Ograniqeǌa na vrednosti istog atributa u odnosu na druga pojav-
ǉivaǌa iste klase - ovo se prvenstveno odnosi na identifikatore tj.
primarne kǉuqeve (,,PRIMARY KEY“) i jedinstvene (,,UNIQUE“) vredno-
sti. Na primer, poǉe ,,matični broj“ mora da ima jedinstvenu vrednost
u svakom pojavǉivaǌu klase ,,Čovek“ jer predstavǉa identifikator i
mo¼e da se koristi kao primarni kǉuq.

1.3.2. Ograniqeǌa na vrednosti razliqitih atributa u okviru istog po-
javǉivaǌa klase, npr. atributi ,,prodajni kurs“, ,,srednji kurs“ i
,,kupovni kurs“ klase ,,Valuta“ (sredǌi kurs je uvek izme±u ova dva).

1.4. Ograniqeǌa na me�uzavisnosti vrednosti atributa vixe klasa -
ova ograniqeǌa se odnose na vrednosti atributa koje zavise od vre-
dnosti atributa nekih drugih klasa. Na primer, poǉe ,,ukupan iznos“
klase ,,Račun“ je suma poǉa ,,iznos stavke“ klase ,,Stavka računa“.



Praktiqno testiraǌe programskih klasa 45

2. Ograniqeǌa nad asocijacijama klase (strukturna ograniqeǌa)
2.1. Ograniqeǌa kardinalnosti veza - svaka asocijacija izme±u dve kla-

se ima svoju doǌu i gorǌu kardinalnost. Ove dve vrednosti odre±uju
minimalan i maksimalan broj objekata jedne klase koji mogu da budu
u vezi sa jednim objektom druge klase i obrnuto. Na primer, klasa
,,Račun“ mo¼e da bude u vezi sa jednim ili vixe pojavǉivaǌa klase
,,Stavka računa“ (svaki raqun ima jednu ili vixe stavki), dok je je-
dno pojavǉivaǌe klase ,,stavka računa“ uvek u vezi sa samo jednim po-
javǉivaǌem klase ,,račun“ (stavka uvek pripada samo jednom konkretnom
raqunu).

2.2. Ograniqeǌa referencijalnog integriteta - ova ograniqeǌa se odno-
se na situaciju kada se jedno od dva pojavǉivaǌa klase koja su u vezi
obrixe ili izmeni. U kontekstu relacionih baza podataka, ovo su ,,ON
UPDATE“ i ,,ON DELETE“ ograniqeǌa. Praktiqan primer je slede²i: ako
se promene podaci pojavǉivaǌa klase ,,proizvod“, potrebno je promeni-
ti reference svih pojavǉivaǌa klase ,,stavka računa“ koje sadr¼e taj
proizvod na novo pojavǉivaǌe.

3. Ograniqeǌa nad metodama klase (ograniqeǌa ponaxaǌa)
3.1. Ograniqeǌa tipa vrednosti parametara metoda - ova ograniqeǌa se

odnose na tipove parametara metoda. Na primer, metoda ,,unesi račun“
mo¼e da sadr¼i samo jedan parametar - pojavǉivaǌe klase ,,Račun“.

3.2. Ograniqeǌa skupa vrednosti parametara metoda - ograniqeǌe skupa
vrednosti koje se mogu uneti kao parametri metoda. Ako, na primer,
metoda ,,unesi račun“ sadr¼i samo jedan parametar tipa ,,Račun“, nije
dozvoǉeno da ovaj parametar ima ,,null“ vrednost.

3.3. Ograniqeǌa ponaxaǌa pod uslovom da su prva dva tipa ograniqeǌa
zadovoǉena - ova ograniqeǌa se odnose na ponaxaǌe metode u situaciji
da su uneti parametri u okviru prethodnih ograniqeǌa. Neka metoda
,,unesi račun“ sadr¼i samo jedan ulazni parametar tipa ,,Račun“. Ako
se metoda pozove sa odgovaraju²om vrednosti parametra, ona bi trebalo
da (ograniqeǌa ponaxaǌa su):

• ako raqun ne postoji u skladixtu podataka, metoda ga unosi
• ako raqun ve² postoji u skladixtu, metoda obavextava korisnika o tome.

Postupak za funkcionalno testiraǌe klasa koji se predla�e u ovom
radu se sastoji u proveri ovih ograniqeǌa za svaku klasu i to u redosledu
koji je dat u klasifikaciji. Drugim reqima, testovi se pixu tako da provere da
li su sva ograniqeǌa nad konkretnom klasom zaista i implementirana u okviru
ǌe.

Izvor podataka o ograniqeǌima je sama dokumentacija programa - bilo
da je u pitaǌu obiqan tekstualni opis ili su to detaǉni UML dijagrami [5].
Prve dve vrste ograniqeǌa se mogu izvesti iz tekstualnih opisa, konceptualnog
modela, relacionog modela ili dijagrama klasa, dok se tre²a vrsta ograniqeǌa
tako±e mo¼e izvesti iz tekstualnih opisa, ali i sluqajeva korix²eǌa, sekven-
cijalnih dijagrama ili dijagrama saradǌe.



46 S. Vlaji², B. Tomi²

Redosled testiraǌa klasa - preporuka je da se klase testiraju u redosledu
implementacije i to paralelno sa implementacijom. To znaqi slede²e: napisati
(implementirati) klasu, odmah je testirati pa tek onda pre²i na implementa-
ciju slede²e klase. Na taj naqin se obezbe±uje sigurnost da ono xto je ve²
implementirano funkcionixe bez grexke i izbegava se situacija da je program
potrebno testirati u celini odjednom.

Sadr�aj i broj testova za konkretnu klasu zavisi od ograniqeǌa koje
ta klasa implementira. Bitno je napomenuti da svaka klasa implementira
samo neka od ograniqeǌa i da je testiraǌe tih ograniqeǌa bitno samo za tu kla-
su. U principu, svaki atribut klase je odre�en sa jednim ili vixe ograniqe-
ǌa atributa, svaka asocijacija sa jednim ili vixe ograniqeǌa asocijacija,
a svaka metoda sa jednim ili vixe ograniqeǌa metoda. Testiraǌe konkre-
tne klase se sastoji u proveri ograniqeǌa za svaki atribut, asocijaciju i
metodu te klase. Na taj naqin se ostvaruje sistematiqnost jer nixta ne ostaje
neprovereno. Provera ograniqeǌa se mo¼e vrxiti na dva naqina. Prvi naqin
je pokuxaj naruxavaǌa ograniqeǌa - pokuxa se unos neke nedozvoǉene vredno-
sti, tipa, ostvarivaǌe nedozvoǉene asocijacije, kardinalnosti asocijacije itd.
Drugi naqin je provera sprovo�eǌa ograniqeǌa - provera da li se metoda zaista
izvrxila u skladu sa ograniqeǌem ponaxaǌa, da li se brisaǌem ili izmenom
nekog objekta zaista osve¼avaju veze drugih objekata prema ǌemu itd. Jox jedna
napomena je to da se pri testiraǌu koristi princip ,,crne kutije“ tj. testiraǌe
se vrxi pozivaǌem samo javno dostupnih metoda klase.

Pokazateǉ za procenu kvaliteta sprovo�eǌa postupka se mo¼e nazva-
ti stepen pokrivenosti ograniqeǌa testovima. Ovaj pokazateǉ predstavǉa
procentualno izra¼en odnos broja ograniqeǌa klase koja su proverena testovi-
ma i ukupnog broja ograniqeǌa (za datu klasu). Xto je pokazateǉ ve²i, to je
sprovedeno testiraǌe kvalitetnije. Naravno, kada su sva ograniqeǌa proverena,
stepen pokrivenosti je 100% i testiraǌe je zavrxeno. Ovaj pokazateǉ se mo¼e
koristiti na nivou klase, ali i na nivou celog programa.

SPOT =
Nt

N
∗ 100%

N = Nat + Nas + Nm

gde je:
SPOT - stepen pokrivenosti ograniqeǌa testovima,
Nt - ukupan broj ograniqeǌa klase koja su proverena testovima,
N - ukupan broj ograniqeǌa za datu klasu,
Nat - broj ograniqeǌa nad atributima klase (vrednosna ograniqeǌa),
Nas - broj ograniqeǌa nad asocijacijama klase (strukturna ograniqeǌa),
Nm - broj ograniqeǌa nad metodama klase (ograniqeǌa ponaxaǌa).
Iako naizgled slo¼en, ovaj postupak se veoma lako koristi. To portvr±uje i

niz praktiqnih primera koji se mogu videti u [7]. Primeri su napisani u skladu
sa postupkom, a odnose se na testiraǌe Java programa. Kao xto postupak nala¼e,
kre²e se od jednostavnijih testova kojima se proveravaju ograniqeǌa vrednosti.



Praktiqno testiraǌe programskih klasa 47

To je u skladu sa redosledom implementacije klasa, pa je ceo proces logiqan i
jednostavan: implementira se klasa ili neki ǌen deo, pa se testira (testiraju se
ograniqeǌa koja bi ta klasa trebalo da sadr¼i). Posle se prelazi na testiraǌe
ograniqeǌa asocijacija, da bi se zavrxilo sa testiraǌem ograniqeǌa ponaxaǌa.
Da bi se ukazalo na jednostavnost automatizacije izvrxavaǌa ovako napisanih
testova, sve vreme se koristi JUnit - koji je praktiqno standard me±u besplatnim
alatima za testiraǌe Java programa [8].

Zakǉuqak

Postupak opisan u ovom radu ispuǌava sve zadate ciǉeve. U pitaǌu je postu-
pak koji je prvenstveno nameǌen nauqnicima, istra¼ivaqima, studentima i svima
koji se ne bave testiraǌem profesionalno. On ima karakteristike sistematiqno-
sti i kompletnosti ali zadr¼ava jednostavnost u primeni i intuitivnost koji
su neophodni da bi bio prihva²en. Za ǌegovu primenu nisu potrebni nikakvi
posebni alati niti poznavaǌe specijalnih tehnika, ve² je dovoǉno imati samo
par dijagrama ili opisa sistema koji se testira.

Neki od mogu²ih daǉih pravaca stra¼ivaǌa su: istra¼ivaǌe naqina za
automatsko generisaǌe testova na osnovu ovog postupka i pravǉeǌe generatora
testova na osnovu postupka.

Literatura

[1] Guide to the Software Engineering Body of Knowledge, IEEE SWEBOK, 2004., dostupno u
elektronskoj formi na internet adresi: www.computer.org/portal/cms docs ieeecs/ieeecs/
education/certification/Swebok 2004.pdf

[2] Software testing, Wikipedia the free encyclopedia, dostupno u elektronskoj formi na internet
adresi: http://en.wikipedia.org/wiki/Software testing

[3] Expert One-on-One J2EE Design and Development, Rod Johnson, Wrox press, 2003., ISBN
0764543857.

[4] ISO 9126 standard, International Standards Organisation (ISO), dostupno u elektronskoj
formi na adresi: http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?
CSNUMBER=22749& ICS1=35& ICS2=80& ICS3=

[5] UML ukratko, Martin Fowler, Mikro knjiga, prevod 3. izdanja, 2004., ISBN 86-7555-239-4.

[6] Projektovanje programa (SKRIPTA), Sinǐsa Vlajić (FON), sopstveno izdanje, 2004., Beo-
grad.

[7] Design patterns, Erich Gamma; Richard Helm; Ralph Johnson; John Vlissides, AddisonWe-
sley, 1999.

[8] Testiranje Java programa korǐsćenjem JUnit alata: Praktikum sa dodatnim objašnjenjima i
postupcima za NetBeans i Eclipse razvojna okruženja za Javu, Bojan Tomić, Zlatni presek,
2007., Beograd, ISBN 978-86-86887-01-6.

[9] JUnit - besplatan alat za testiraǌe Java programa, javno dostupan na internet adresi:
www.junit.org

Fakultet organizacionih nauka, Univerzitet u Beogradu, Jove Ili²a 154, 11000 Beograd
E-mail: vlajic@fon.bg.ac.yu, bishop@drenik.net


