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Uvod

Za pojedine matematiqke iskaze postoji ,,kroz dugi niz godina“ veliki broj
dokaza – bilo je, u neku ruku, ,,u trendu“ za pojedine teoreme izvoditi nove
dokaze.

Primjeri toga su otprilike:

• Pitagorina teorema.

Dobar uvid u okru¼eǌe i raznovrsnost ǌenih preko 300 dokaza daje kǌi¼ica
[4] (tako±e vrijedna preporuke i kad su u pitaǌu uqenici). (Kao kuriozitet se
tamo navodi da je kasniji ameriqki predsjednik James A. Garfield kao poslanik
Kongresa 1876. godine otkrio interesantan dokaz Pitagorine teoreme, koji je
odxtampan u qasopisu New England Journal of Education. On je svoj dokaz pro-
naxao dok je za vreme rada Kongresa razbijaju²i dosadu rexavao matematiqke
zadatke!)

• Nejednakost izme�u geometrijsko-aritmetiqke sredine.

O ovoj osnovnoj qiǌenici iz teorije te¼inskih sredina, qiji je prvi dokaz
dao MacLaurin u prvoj tre²ini 18. veka, nalaze se u kǌizi [5] 52 razliqita
dokaza.

• Osnovno pravilo algebre.

I za ǌega je od prvog Gauss-ovog dokaza iz 1799. godine – nalazi se u ǌegovom
doktoratu – osmixǉeno nedogledno mnogo daǉih naqina dokazivaǌa.

I teorema navedena u naslovu, koju je u svojim Elementima prvi formuli-
sao i dokazao Euklid, spada u ovu kategoriju. (Qak i danas se, pored svih ovih
rezultata, u qasopisima objavǉuju dosta iznena±uju²i novi dokazi.)

Kakav je zapravo interes u tome da se jedna odavno poznata i elementar-
na qiǌenica stalno iznova potvr±uje? Kao xto ²emo vidjeti kod Euklidove
teoreme, mnogi dokazi su rezultat nastavǉenih razmixǉaǌa, na primjer, o ras-
podjeli prostih brojeva. Novi dokaz bi onda bio ilustracija neke nove ideje ili
novog koncepta jedne texke opxte teorije. Kod Euklidove teorme se tu me±utim
pridru¼uju i kulturni i estetski motivi, kao xto je Ribenboim [13, str. 3]
primjetio: ,,Navex²u nekoliko dokaza ove teoreme [ . . . ] od poznatih, ali i od
zaboravǉenih matematiqara. Neki dokazi pretpostavǉaju zanimǉive razvitke;
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drugi su jednostavno pametni ili neobiqni“. Ovakvi motivi su upravo kod ele-
mentarnih rezultata od velikog znaqaja.

Najposlije, postoje i pedagoxki razlozi, kao xto je Benjamin F. Finkel (u
prvom broju qasopisa American Mathematical Monthlly) napisao: ,,Rjexavaǌe
problema je jedan od najni¼ih oblika matematiqkog istra¼ivaǌa, . . . ipak ǌego-
va obrazovna vrijednost ne smije biti potcjeǌena. Rijeq je o stepenicama kojima
se um peǌe ka vixim poǉima originalnog istra¼ivaǌa i ispitivaǌa. Mnogi
spavaju²i, neiskorix²eni umovi potaknuti su na djelovaǌe kroz savla±ivaǌe
jednog jedinog problema“.

U ovom radu ²e biti predstavǉeni neki od dokaza ove teoreme, koju je Im-
manuel Kant u svojoj Kritici qistog uma nazvao remek-djelom ǉudskog uma.
Dokazi teku uglavnom indirektno, xto znaqi da pretpostavǉaju da postoji samo
konaqno mnogo prostih brojeva, i iz toga izvode kontradikciju.

Dokazi su ve²im dijelom ,,elementarni“ u smislu da je za ǌihovo razumevaǌe
dovoǉno poznavaǌe jednostavnih teorema o djeǉivosti, o redovima, odnosno o
topoloxkim prostorima. U kojoj mjeri su posebno elegantni (u smislu koji tom
pojmu daje Erdös, v. [1]), to prepuxtamo qitaocima na ocjenu.

Velika pomo² kod ovog ,,putovaǌa“ bile su nam na kraju navedene kǌige,
qlanci i inter-stranice.

A) Prvobitni dokaz i neke ǌegove varijacije

Pretpostavimo da su p1 = 2 < p2 = 3 < · · · < pn svi prosti brojevi.

(1) [Euklid] Posmatrajmo broj Pn = p1 ·p2 ·. . .·pn+1. Svaki prosti djelilac
p broja Pn mora da bude razliqit od brojeva p1, . . . , pn. (Inaqe bi p morao da
dijeli broj 1!) Time se dobija da mora da postoji jox jedan prosti broj.

Iz ovog dokaza se induktivno dobija i jedna (jako neprecizna) procjena n-tog
prostog broja: pn 6 2(2n−1).

(2) [Kummer] Kod ovog dokaza se koristi (maǌi) broj Qn = p1 ·p2 · . . . ·pn−1
umjesto Pn.

(3) [Stieltjes] Zamislimo proizvod Nn = p1 · p2 · . . . · pn razlo¼en na dva
faktora a i b, znaqi Nn = a · b. Budu²i da nijedan prost broj ne dijeli oba
faktora, zbir a + b nije djeǉiv ni sa jednim od postoje²ih prostih brojeva.

Euklidov i Kumerov dokaz sugerixu neka pitaǌa, do qijih je rjexeǌa tre-
nutno jako daleko. Definiximo sǉede²a qetiri niza.

a) Neka je a1 = 2. Za n > 1 posmatrajmo broj An = a1 ·a2 · . . . ·an +1 i oznaqimo
sa an+1:

i) najmaǌi, odnosno

ii) najve²i prosti djelilac broja An.

b) Polaze²i od b1 = 3 posmatrajmo sliqna, ali sada preko Bn = b1 ·b2 ·. . .·bn−1
izra¼ena, dva beskonaqna niza prostih brojeva.
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Vjerovatno u oba sluqaja nizovi pod i) sadr¼e sve proste brojeve. O
nizovima pod ii) pretpostavǉa se da u sluqaju a) postoji beskonaqno mnogo
prostih brojeva koji se u ǌemu ne javǉaju, dok su svojstva niza b) jox uvijek
priliqno nepoznata. (Ali zna se da se u ǌemu prosti brojevi 7, 11, 13, 17, i 19
ne pojavǉuju.)

B) Od relativno prostih do prostih brojeva

Dokazi koji ²e sad uslijediti temeǉe se na jednostavnoj (u ovom obliku prvi
put od strane Hurwitz-a formulisanoj) pomo²noj teoremi.

Ako postoji beskonaqan niz prirodnih brojeva, koji su svi ve�i od 1 i
koji su u parovima relativno prosti, onda je skup P svih prostih brojeva
beskonaqan.

(Naime, svakom prirodnom broju dodjeǉuje se prosti faktor odgovaraju²eg
qlana niza.)

Obratite pa¼ǌu na to da se najve²i zajedniqki delilac mo¼e odrediti uz
pomo² Euklidovog algoritma. Zbog toga poznavaǌe razlagaǌa na proste faktore
pojedinih qlanova niza nije potrebno.

(1) [Goldbach] Fermaovi brojevi Fn = 2(2n) +1, n > 0, zadovoǉavaju uslove
pomo²ne teoreme.

(Jer, potpunom indukcijom se lako doka¼e da vrijedi Fn = F0·F1·. . .·Fn−1+2,
n > 1. Zbog toga je za 0 6 k < n broj Fk jedan djelilac broja Fn − 2. Ako bi
d > 1 bio zajedniqki djelilac brojeva Fk i Fn, tada bi d moralo da dijeli 2.
Ovo je, me±utim, protivrjeqno, budu²i da su svi Fermaovi brojevi neparni.)

(2) [Sylvester] Rekurzivno definisan niz x1 = 2, xn+1 = x2
n − xn + 1, n > 1,

ispuǌava uslove pomo²ne teoreme.

(Jer se ovdje potpunom indukcijom dokazuje da vrijedi xn+1 = x1 · x2 · . . . ·
xn + 1, n > 1.)

(3) Sada je blisko i pitaǌe da li se ideje koje se kriju iza ova dva dokaza
mogu proxiriti. I zaista, vrijedi sǉede²a opxtija teorema.

Za relativno proste prirodne brojeve a i b, niz x1 = a, xn+1 = x1 · x2 ·
. . . · xn + b, n > 1, ispuǌava sve uslove pomo�ne teoreme.

(Dokaz se mo¼e provesti induktivno i ostaje qitaocu kao zadatak za vje¼-
baǌe.)

Kao jox jedan naqin uopxtavaǌa, mogu se formirati i nizovi tipa x1 > 2,
xn+1 = xn(xn−1)yn+1, n > 1, koji tako±e zadovoǉavaju uslove pomo²ne teoreme.
(Pri tome je y1, y2, . . . prikladan niz prirodnih brojeva.) Primjer toga je
yn = xn, odnosno rekurzija xn+1 = x2

n(xn − 1) + 1.
(4) [Schorn] Za neki prirodan broj n > 2 su dva i dva broja n! · i + 1 i

n! · j + 1, 1 6 i < j 6 n, relativno prosta.

(Jer, ako je j = i + k, 1 6 k < n, slijedi da je n! · j + 1 = (n! · i + 1) + n! · k.
Ovo pokazuje da (za svako n) mora postojati najmaǌe n prostih brojeva.)
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Znaqaj Fermaovih prostih brojeva (na pitaǌe da li ih ima beskonaqno
mnogo jox nije odgovoreno) za konstruisaǌe pravilnih mnogouglova je poznat
jox od Gauss-a. Ispitivaǌe da li se neki konkretan broj Fn mo¼e rastaviti na
faktore, jeste proba za ,,super-raqunare“ (i od va¼nosti je za kriptografiju).

C) ,,Neobiqni“ najve�i zajedniqki djelilac
i beskonaqno mnogo prostih brojeva

Ovaj dio poqiǌemo sa dva tvr±eǌa iz teorije brojeva koja su i po sebi
interesantna. Neka su a > 2, m,n > 1 prirodni brojevi i neka je fn n-ti
Fibonaqijev broj. Najve²i zajedniqki djelilac brojeva u i v oznaqava²emo sa
(u, v). Onda vrijedi:

i) (am − 1, an − 1) = a(m,n) − 1 i

ii) (fm, fn) = f(m,n).

Oba tvr±eǌa se dokazuju pomo²u Euklidovog algoritma. (Glavne ideje su:

za i): ako je n = mq + r gdje je q > 0 i 0 6 r < m, vrijedi da je an − 1 =
ar(amq − 1) + (ar − 1), iz qega se dobije da je (am − 1, an − 1) = (an − 1, ar − 1).

za ii): susjedni Fibonaqijevi brojevi su relativno prosti i vrijedi fm+n =
fm−1fn +fmfn+1, m,n > 1, iz qega se dobije f(k+1)m = fkm−1fm +fkmfm+1 gdje
je m, k > 1.)

(1) Uzmimo da su n−1 brojeva p2 = 3 < · · · < pn svi neparni prosti brojevi.
(Pri tome je p1 = 2.) Onda su dva i dva od Mersenovih brojeva 2p1 − 1, . . . ,
2pn−1 relativno prosta (uzima se da je a = 2 u i)) i postoji najmaǌe n neparnih
prostih brojeva (uporedi pomo²nu teoremu).

(2) Sa brojevima fp1 , . . . , fpn sliqno (pomo²u (ii)) dolazimo do protivrje-
qnosti.

Znaqaj Mersenovih prostih brojeva Mp = 2p − 1 pri karakterizaciji par-
nih savrxenih brojeva je poznat jox od Euler-a. (Pitaǌe o beskonaqnosti skupa
takvih brojeva je otvoreno.)

D) Brojevi sa ,,dovoǉno mnogo“ prostih faktora

Euklidova teorema se mo¼e dokazati i tako xto se konstruixu nizovi pri-
rodnih brojeva qiji qlanovi imaju strogo rastu²i niz prostih faktora.

(1) Niz xn = 2(2n)+2(2n−1)+1, n > 1, ima prethodno navedenu osobinu. (Jer
uz pomo² identiteta a4 + a2 + 1 = (a2− a + 1)(a2 + a + 1) slijedi za a = 2(2n−1):
xn+1 = (2(2n) − 2(2n−1) + 1)xn, n > 1. Budu²i da su oba faktora ve²a od 1 i
relativno prosta, slijedi pri x1 = 7 da svaki qlan niza xn ima barem n prostih
faktora.)

(2) Posmatrajmo sada razlagaǌe na proste faktore broja n! = 1 · 2 · . . . · n,
n > 2, dakle n! =

∏
p6n

pen(p). (Pri tome se proizvod prote¼e na sve proste
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brojeve iz intervala [2, n].) Pokazujemo nejednakost
∏

p6n

p−1
√

p >
n

e
i samim time

beskonaqnost skupa P svih prostih brojeva.
Jox od Legendre-a, poznata je ,,kompaktna“ formula za odre±ivaǌe ekspo-

nenata en(p), i to en(p) =
∑
j>1

⌊
n

pj

⌋
. (Pri tome treba obratiti pa¼ǌu na

sǉede²e: taqno bn/pc faktora broja n! su deǉivi sa p, taqno
⌊
n/p2

⌋
su jox

jednom deǉivi sa p, dakle sa p2, itd.) Zbog toga vrijedi en(p) 6
∑
j>1

n

pj
=

n

p− 1
,

iz qega slijedi n
√

n! 6
∏

p6n

p−1
√

p. Pretpostavǉena nejednakost dobija se iz

sǉede²e procjene Stirling-ovog tipa: n
√

n! >
n

e
, odnosno u logaritmovanom obliku

1
n

(ln 2 + · · ·+ ln n) > ln n− 1.

(Budu²i da funkcija y = ln x, x > 0, strogo raste, vrijedi, kad je j =
2, . . . , n da je ln j = (ln j) · 1 >

∫ j

j−1
ln x dx. Zbog toga je napokon

ln 2 + · · ·+ ln n >

∫ n

1

ln x dx = (x ln x− x)|n1 = n ln n− n + 1 > n(lnn− 1).)

(3) Neka je f(x) nekonstantni polinom sa cjelobrojnim koeficijentima. Ta-
da iz skupa {f(1), f(2), . . . } proizlazi beskonaqno mnogo prostih faktora, odno-
sno prostih brojeva p, tako da je za odgovaraju²i prirodni broj N , vrijednost
polinoma f(N) djeǉiva sa p.

Neka je f(x) = anxn + · · ·+ a1x + a0, n > 1 i an 6= 0. Treba da bude a0 6= 0.
(Tvr±eǌe za a0 = 0 slijedi kao kod Euklida – stavǉa se N = p.) Pretpostavimo
da skup {f(1), f(2), . . . } sadr¼i samo konaqno mnogo prostih djelilaca p1, . . . ,
pr i posmatrajmo beskonaqni niz brojeva Nm = 2m · p1 · . . . · pr · a2

0, m = 1, 2, . . . ,
za koji vrijedi (uz skra²enicu q = 2m ·p1 · . . . ·pr) da je f(Nm) = a0(ana2n−1

0 qn +
· · · + a1a0q + 1). Zbog toga xto |f(x)| → ∞ za x → ∞, apsolutna vrijednost
zagrade je za dovoǉno veliko m ve²a od 1, i prema tome sadr¼i barem jedan
prosti faktor, koji mora biti razliqit od p1 i pr.

E) S one strane euklidskog horizonta

Gore navedene elementarne ideje jako brzo mogu dovesti do texkih pitaǌa.
Odgovori su qesto duboke teoreme, iz kojih Euklidova teorema proizlazi kao
jednostavan zakǉuqak (zbog qega se samo po sebi razumije da vixe ne mo¼emo
da govorimo o alternativnim dokazima). Pri tome ne mo¼emo a da ne pomenemo
sǉede²a dva rezultata.

(1) [Dirichlet] Jedan interesantan poseban sluqaj taqke (3) odeǉka D) qine
linearne funkcije f(x) = dx + a (a, d ∈ Z, d 6= 0), qije vrijednosti f(1), f(2),
. . . daju beskonaqno mnogo prostih faktora. Ovdje, doduxe, vrijedi jedan puno
znaqajniji rezultat, a to je

Dirichlet-ova teorema. Neka je an = dn + a, n = 0, 1, 2, . . . , strogo
rastu²i (aritmetiqki) niz cijelih brojeva, pri qemu su brojevi a i d relativno
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prosti. Tada ovaj niz sadr¼i beskonaqno mnogo prostih qlanova. (Taqnije,
vrijedi qak i: svaka klasa ostataka u Z∗d sadr¼i, grubo reqeno, ,,ϕ(d)-ti deo
svih prostih brojeva“.)

Dokaza²emo sad, primjera radi, dva posebna sluqaja Dirihleove teoreme,
a to su:

(a) Postoji beskonaqno mnogo prostih brojeva oblika p = 3n + 2.
Pretpostavimo da postoji samo konaqno mnogo takvih prostih brojeva, dakle

p1 = 2, p2 = 5, p3 = 11, . . . , pN . Tada je broj z = 3p1 · . . . ·pN−1 relativno prost
sa p1, . . . , pN i ispuǌava z ≡ 2 (mod 3). z stoga ne mo¼e imati same proste
faktore q sa q ≡ 1 (mod 3)! (Poxto n mora da bude neparno, dokazali smo i da
postoji beskonaqno mnogo prostih brojeva tipa p = 6m + 5.)

(b) Daleko te¼i je dokaz da postoji i beskonaqno mnogo prostih brojeva
oblika p = 6n + 1. ǋemu se pridodaje, sam po sebi interesantan, iskaz:

(∗) Svi prosti faktori p > 3 trinoma x2 + x + 1, x ∈ N, ispuǌavaju p ≡ 1
(mod 6).

(Jer, pretpostavimo da je p = 3m+2 djelilac od x2+x+1. Sada, pak, p nije
djelilac broja x i vrijedi (x− 1)(x2 + x + 1) ≡ 0 (mod p), xto znaqi x3 ≡ 1
(mod p). Zbog toga se dobije xp−2 ≡ 1 (mod p), dakle xp−1 ≡ x (mod p). No, po
,,maloj“ Fermaovoj teoremi je xp−1 ≡ 1 (mod p). Zbog toga je x ≡ 1 (mod p),
iz qega zbog x2 + x + 1 ≡ 3 (mod p) slijedi kontradikcija 3 ≡ 0 (mod p). Stoga
mora da vrijedi p ≡ 1 (mod 3), dakle i p ≡ 1 (mod 6).)

Opet pretpostavǉamo da su p1 = 7, p2 = 13, . . . , pN svi prosti brojevi tipa
p ≡ 1 (mod 6) i posmatramo sada broj z = w2+w+1, pri qemu je w = p1 · . . . ·pN .
Iz w = 6k + 1 se dobije z = 36k2 + 18k + 3, xto znaqi z ≡ 3 (mod 9). Zbog toga
neparni broj z nije potpuni stepen od 3, i z mora da sadr¼i prosti faktor q > 3,
za kojeg zbog (∗) mora da bude ispuǌeno q ≡ 1 (mod 6). Ali q je, u suprotnosti
sa pretpostavkom, razliqit od svih p1, . . . pN .

Daǉe primije²ujemo da se iskaz (∗) da uopxtiti na sǉede²i naqin: neka su
p i q dva prosta broja, p 6= q. Ako je p djelilac polinoma xq−1+xq−2+ · · ·+x+1,
pri qemu x ∈ N, onda vrijedi p ≡ 1 (mod q).

(Tako se mo¼e potvrditi beskonaqno mnogo drugih posebnih sluqajeva Di-
rihleove teoreme, naime da postoji beskonaqno mnogo prostih brojeva oblika
p = qn + 1, gde je q dati prost broj.)

Za opxte postavǉaǌe problema koji sa raznih strana osvjetǉavaju Diri-
hleovu teoremu, ¼elimo da uka¼emo na odgovaraju²u literaturu, posebno na [13],
glave 3, 4 i 6, i [15], glave III i IV. Pri tome se radi izme±u ostalog o pitaǌu
polinomskog ,,generisaǌa prostih brojeva“ (tj. da li postoji polinom s celo-
brojnim koeficijentima nad skupom N, odnosno Nn, koji kao svoje vrijednosti
ima beskonaqno mnogo, ili qak sve proste brojeve), i to:

(i) kroz polinome P (x) jedne promjenǉive i stepena bar 2.
(Ve² ,,bezazleni“ polinom P (x) = x2 + 1 dovodi do najte¼ih pitaǌa u vezi

sa klasama brojeva h(p) iz kvadratnog poǉa Q(
√

p), p prost.) Do danas nije



Postoji beskonaqno mnogo prostih brojeva 7

poznat nijedan polinom P za koji skup P (N) sadr¼i beskonaqno mnogo prostih
brojeva, ali se zna da se kod nekonstantnih polinoma me±u brojevima |P (n)|,
n ∈ N, nalazi beskonaqno mnogo slo¼enih.

(ii) kroz polinome P (x1, . . . , xn) sa konaqno mnogo promjenǉivih (n > 2). Za
takve polinome su dokazana mnoga duboka svojstva, od kojih navodimo neka.

• Euler je pokazao da postoje odre±eni koeficijenti d ∈ N (on ih je nazvao
,,podobnim“ brojevima [= numeri idonei]), za koje vrijedi: neki neparni broj z
je taqno onda prost kada se mo¼e prikazati u obliku z = x2 + dy2 sa x, y > 0
i NZD(x, dy) = 1. (Danas je poznato da postoji samo konaqno mnogo takvih
brojeva.)

• Opxtije, vrijedi qak: takozvane primitivne kvadratne forme ax2 + bxy +
cy2 imaju beskonaqno mnogo prostih vrijednosti ako su a, b i c relativno prosti.

• Kada su apsolutne vrijednosti jednog polinoma P ∈ C[x1, . . . , xn] nad
skupom Nn (n > 1) sami prosti brojevi, onda je P konstantan.

• U vezi sa rjexeǌem desetog Hilbertovog problema, qija je tema izra-
qunǉivost rjexeǌa polinomskih diofantskih jednaqina, izvedeno je jedno izne-
na±uju²e svojstvo (Matijasevič, Putnam, Davis, Robinson):

Postoji polinom P (x1, . . . , xn), takav da se skup ǌegovih pozitivnih vri-
jednosti nad skupom Nn poklapa sa skupom P svih prostih brojeva. (Takvi
polinomi navedeni su i eksplicitno. Pri tome je za n = 26 stepen polinoma
d = 25. Zna se tako±e da su veliqine brojeva n i p ,,u direktnom odnosu“ jedna
prema drugoj.)

(Osim toga je u ovoj oblasti James 1982. godine dokazao zavidnu (meta-)
teoremu o teorijama T koje se mogu aksiomatizovati, a glasi: ako je neko tvr±eǌe
P dokazivo u T, onda P izvan T ima ,,dokaz“ koji se sastoji od 100 sabiraǌa i
mno¼eǌa celih brojeva.)

Prije nego xto se posvetimo daǉim dokazima Euklidove teoreme, treba spo-
menuti da je poznati polinom P41(x) = x2 − x + 41, koji za x = 0, 1, . . . , 40 daje
same proste brojeve, zajedno sa odgovaraju²im uopxteǌem Pq(x) = x2 − x + q,
povezan sa jednim interesantnim problemom faktorizacije: postoji taqno devet
cijelih brojeva d (tzv. Hegner -ovih brojeva), i to d = 1, 2, 3, 7, 11, 19, 43, 67 i 163,
za koje ,,cijeli“ brojevi oblika a + b

√−d dozvoǉavaju jedinstveno rastavǉaǌe
na proste faktore. (Pri tome su za d = 1, 2 brojevi a i b cijeli, a u ostalih
sedam sluqajeva se za a i b moraju dozvoǉavati i polucijeli brojevi – v. [6],
str. 251.) I upravo za xest smislenih cjelobrojnih vrijednosti q = 1+d

4 , naime
za q = 2, 3, 5, 11, 17 i 41, dobiju se, ve² od Euler-a i Gauss-a pretpostavǉeni kao
jedini mogu²i polinomi Pq(x).

(2) [Bertrand] Me±u najte¼e zadatke teorije brojeva ubraja se pronala¼eǌe
,,dobrih“ funkcija f : N → R+ koje garantuju da u intervalu (n, n + f(n)]
,,uvijek“ postoji jedan prost broj (i to ili za svako n > 1 ili samo za skoro
svako n ∈ N, tj. za svako n > Nf , pri qemu granica Nf zavisi od f – pri to-
me je doduxe ǌeno postojaǌe osigurano, ali u ve²ini sluqajeva nije efektivno
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izraqunǉivo). Sǉede²e tvr±eǌe (za koje je Erdös u uzrastu od 19 godina naxao
posebno lijep dokaz, v. [1], glava 2) pokazuje da je f(n) = n jedna takva funkcija.

Bertrand-ova teorema. Za svaki prirodan broj n > 1, postoji prost
broj me±u brojevima n + 1, n + 2, . . . , 2n.

Iz toga se izvodi Euklidova teorema, pa slijedi: ako se umjesto n stave
redom 1, 2, 22, . . . , 2N , . . . , tada je izme±u svaka dva od ovih brojeva jedan prost
broj i skup P je stoga beskonaqan. Osim toga se ovako dobija jox uvijek dosta
neprecizna procjena pn 6 2n.

(Trenutno najboǉe procjene n-tog prostog broja dali su Rosser, Schoenfeld i
Robin i one glase n(log n+log log n−α) < pn < n(log n+log log n−β), pri qemu
prva nejednakost vrijedi sa α = 1.0072629 za svako n > 2, dok druga vrijedi za
svako n > 20 kad je β = 0.5. Na desnoj strani se mo¼e uzeti i β = 0.9385 kada
se ograniqi da je n > 7022.)

U vezi sa napred pomiǌanom funkcijom f zna se, s jedne strane, da je tre-
nutno najboǉa stepena funkcija data sa f(n) = n0.535+ε. (Pri tome je ε > 0
proizvoǉno.) Ona za skoro svako n daje intervale sa tra¼enim svojstvom. S
druge strane, mo¼e se pokazati i da postoji podskup M ⊂ N gustine 1, takav da
qak svi intervali [n, n + n1/6+ε], ε > 0, za n ∈ M sadr¼e bar jedan prost broj.

(Budu²i da su, za N > 1, svi uzastopni brojevi (N +1)!+2, (N +1)!+3, . . . ,
(N+1)!+(N+1) slo¼eni, neposredno se vidi da gore pomenute funkcije f moraju
biti neograniqene.)

Pretpostavǉa se i da izme±u uzastopnih kvadratnih brojeva le¼e uvijek
2 prosta broja, dok izme±u uzastopnih kubnih le¼e qetiri.

Katkad intervali mogu da budu i jako kratki, na primer, u sluqaju prostih
brojeva blizanaca p i p + 2, kakvi su 5 i 7 ili 41 i 43. Jox uvijek se, doduxe,
ne zna se da li postoji beskonaqno mnogo takvih, ali je Brun dokazao zapaǌuju²i
rezultat:

Zbir B =
∑

(p,p+2)∈P2

(
1
p

+
1

p + 2

)
, uzet po svim prostim parovima blizanci-

ma, konvergira (ǌegova vrednost B nazvana je Brunovom konstantom). Kasnije
je komplikovanim metodama analitiqke teorije brojeva odre±ena i vrijednost
konstante B. (Vidjeti o tome u [9], glave VII–IX, i [13], glava 4.)

F) Ojlerov dokaz i jedna ǌegova varijacija

Euler-u se pripisuje jednostavan analitiqki argument, koji ima znaqajne
posǉedice. Opet se pretpostavǉa da postoji samo n prostih brojeva p1, . . . , pn.

(1) [Euler] Budu²i da svaki prost broj p zadovoǉava uslov 1/p < 1, besko-

naqni geometrijski red 1 +
1
p

+
1
p2

+ · · · konvergira (i ima zbir
p

p− 1
). No tako

slijedi (
1 +

1
p1

+
1
p2
1

+ · · ·
)
· . . . ·

(
1 +

1
pn

+
1
p2

n

+ · · ·
)

< ∞.
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Po osnovnoj teoremi aritmetike, svaki prirodni broj z ima jedinstveni prikaz
z = pe1

1 · . . . · pen
n . Zbog toga se mno¼eǌem dobije da navedeni proizvod n geome-

trijskih redova mora imati konaqnu vrijednost 1 +
1
2

+
1
3

+ · · · . (Ovo, me±utim,

nije mogu²e, jer harmonijski red divergira.)

(2) [Legendre] Sliqan dokaz se dobije kada se posmatra n geometrijskih re-

dova 1+
1
p2

j

+
1
p4

j

+· · · = p2
j

p2
j − 1

(j = 1, 2, . . . , n). Pomo²u ǌih bi se sada dobilo da

suma ζ(2) = 1 +
1
22

+
1
32

+ · · · ima racionalnu vrijednost. (To je kontradikcija,

jer je ζ(2) = π2/6.)

G) Kombinatorni dokazi

Iz pretpostavke da postoji samo konaqno mnogo prostih brojeva izvode se
kontradiktorne procjene veliqina teorije brojeva. Posebno lijep je sǉede²i
dokaz koji se koristi Ojlerovom ϕ-funkcijom, koja za svaki prirodan broj z
raquna broj qlanova skupa {1, 2, . . . , z − 1} koji su sa z relativno prosti. Opet
se pretpostavǉa da su p1 = 2, p2 = 3, . . . , pr svi prosti brojevi.

(1) Za ǌihov proizvod P = p1 · . . . · pr bi onda moralo da vrijedi ϕ(P ) = 1,
xto je kontradikcija sa poznatom formulom ϕ(P ) = (p1 − 1) · . . . · (pr − 1) > 1.

(2) Svaki prirodan broj z se mo¼e napisati u obliku z = z2
1 · k, pri qemu

je k broj ,,slobodan od kvadrata“, tj. ima predstavǉaǌe k = pe1
1 · . . . · per

r sa
eksponentima ej ∈ {0, 1} (j = 1, . . . , r). No sada je z1 6 √

z i za k postoji
najvixe 2r mogu²nosti. Zbog toga za broj z elemenata skupa {1, 2, . . . , z} vrijedi
nejednakost z 6 √

z · 2r, koja je nemogu²a kad z →∞.

(Mo¼e se qak pokazati da udio αn qlanova skupa {1, 2, . . . , n} koji su slo-
bodnih od kvadrata zadovoǉava uslov αn → 6/π2 = 0.6079 . . . (n →∞), taqnije

vrijedi qak i αn =
6
π2

+ o
( 1√

n

)
, kad n →∞.)

(3) [Thue] Neka su n, k > 1 cijeli brojevi za koje treba da vrijedi (1+n)k <
2n. Tada me±u brojevima 1, 2, 3, . . . , 2n postoji bar k + 1 prost.

Pretpostavimo da postoji samo r prostih brojeva, pri qemu je r 6 k. Svaki
prirodan broj z, 1 6 z 6 2n, ima jedinstveno predstavǉaǌe z = 2e1 · 3e2 · . . . · per

r ,
pri qemu je e1 = n i ej = 0 ili je 0 6 e1 < n, 0 6 e2 < n, . . . , 0 6 er < n. Ali
iz toga se dobije za broj svih posmatranih brojeva z, da bi moralo vrijediti
2n 6 1 + nr < (n + 1)r 6 (n + 1)k < 2n, xto je kontradikcija. (Za n = 2k2

slijedi zbog 1 + 2k2 < 22k, k > 1, da postoji najmaǌe k + 1 prost broj maǌi od
4(k2). Stoga vrijedi gruba procjena pk+1 < 4(k2).)

H) Fürstenberg-ov topoloxki dokaz

Na skupu Z svih celih brojeva se topologija mo¼e uvjesti na sǉede²i naqin.
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Za a, b ∈ Z, b > 0, neka je Na,b = { a + bn : n ∈ Z } (tj. Na,b je ,,obostrano
beskonaqan“ aritmetiqki niz). Skup O ⊂ Z nazivamo otvorenim kada je ili
O = ∅ ili kada za svako a ∈ O postoji b > 0, tako da vrijedi Na,b ⊂ O.

Iz ove definicije se neposredno primje²uje da je unija dva otvorena skupa
O1 i O2 (pa i konaqno mnogo ǌih) ponovo otvoren skup. Neka a ∈ O1 ∩O2. Tada
postoji b1, b2 > 0 sa Na1,b1 ⊂ O1 i Na2,b2 ⊂ O2. Slijedi da a ∈ Na,b1b2 ⊂ O1∩O2

i potrebne karakteristike topologije su dokazane.

Iz ǌih slijedi da je:

(a) svaki neprazni otvoreni skup beskonaqan;

(b) svaki skup Na,b i zatvoren.

Samo o (b) treba jox malo razmisliti. Kako je Na,b = Z \
b−1⋃
k=1

Na+k,b to je
Na,b komplement otvorenog skupa.

Pretpostavimo da je skup P svih prostih brojeva konaqan. Budu²i da svaki
cijeli broj z 6= ±1 posjeduje jedan prosti qinilac p, tj. sadr¼an je u skupu N0,p,
slijedi da je Z \ {−1, 1} =

⋃
p∈P

N0,p. Prema (b) je zbog toga skup Z \ {−1, 1}
zatvoren. Onda je {−1, 1} otvoren skup, xto je u kontradikciji sa (a).

Zakǉuqak

Na kraju, vratimo se jox jednom teoriji brojeva.

U nadi da smo ovim pregledom jednog malog dijela teorije prostih brojeva
kod qitaoca probudili interes za poznavaǌem taqnih svojstava ,,jednostavnih
brojeva“, primijetimo na kraju da je Erdös na svoj jednostavan, ali genijalan
naqin dokazao beskonaqnost skupa P, tako da se mo¼e izvesti jox jedna Euler-ova

teorema, i to divergencija reda
∑

p∈P

1
p
. (V. [1], glava 1.)

Kao zavrxetak ¼elimo da ponudimo sǉede²i zadatak (da, po u uvodu citi-
ranom stavu Finkel-a, qitaoca pozovemo da se ,,uspne stepenicama teorije broje-
va“): niz svih brojeva oblika 2n − 3, n = 2, 3, . . . sadr¼i beskonaqan podniz sa
qlanovima koji su relativno prosti u parovima. (V. tako±e [2], str. 98–99.)
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2. Š. Arslanagić, Matematička indukcija, Otisak, Sarajevo, 2001.

3. P. Basieux, Die Top Ten der schönsten mathematischen Sätze, Rowohlt Taschenbuch Verlag,
Reinbeck bei Hamburg, 2000.

4. P. Baptist, Pythagoras – und kein Ende?, Ernst-Klett-Verlag, Leipzig-Stuttgart-Düsseldorf,
1997.
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OBAVEXTEǋA

SKUPXTINA DRUXTVA MATEMATIQARA SRBIJE

Za vreme Republiqkog seminara o nastavi matematike, u Nixu je 12.01.2008.
godine odr¼ana redovna godixǌa Skupxtina Druxtva matematiqara Sr-
bije. Na Skupxtini je 88 delegata podru¼nica i qlanova Upravnog odbora
usvojilo izvextaje o radu Druxtva u prethodnoj godini koje su podneli pred-
sednik Druxtva, Upravni i Izvrxni odbor. Za predsednika DMS u narednom
dvogodixǌem mandatu ponovo je izabran

dr Branislav Popovi�, docent PMF u Kragujevcu.

Izabrani su i novi qlanovi Upravnog odbora Druxtva iz podru¼nica koje
imaju odgovaraju²i broj qlanova.


