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1. Uvod

Me±u najte¼a tvr±eǌa u matematici spadaju ona koja tvrde da se nexto ne
mo¼e uraditi. Recimo, ,,svi znamo“ da je nemogu²e pomo²u leǌira i xestara
izvrxiti kvadraturu kruga ili trisekciju ugla, ali nije previxe onih koji to
znaju i da doka¼u, ili bar da uka¼u na ideju kako se taj dokaz sprovodi. Ima,
naravno, i tvr±eǌa tog tipa koja se relativno lako dokazuju, obiqno svo±eǌem
na kontradikciju – o jednom takvom quvenom dokazu (Euklidovom dokazu da se
ne mo¼e na²i najve²i prost broj) bilo je govora u jednom od proxlih brojeva
ovog qasopisa. Takvi dokazi onda spadaju me±u klasiqne matematiqke ,,bisere“
i qesto se citiraju, pa i predaju u xkoli.

Jedno od quvenih tvr±eǌa pomenutog tipa, koje pritom sigurno ne spada u
kategoriju oqekivanih, a ni lako dokazivih, jeste Abelova1 teorema koja tvrdi
da za algebarsku jednaqinu stepena ve²eg od qetiri ne postoji formula koja je
rexava u opxtem sluqaju. Kogod da prvi put quje za takvu qiǌenicu, verovatno
se upita: ,,A zaxto bax 4?“ Drugim reqima, kako to da za 2, 3 i 4 takve for-
mule postoje, a za 5 i vixe ne? Odgovor nije ni malo jednostavan, no ipak je
elementaran (tj. ne koristi ,,vixu matematiku“) i ciǉ ovog qlanka je da, uglav-
nom slede²i kǌigu [1], izlo¼i pomenuti Abelov dokaz u nexto modifikovanom
obliku.

Pre navo±eǌa samog dokaza, evo nekoliko istorijskih napomena.

Stari Grci nisu imali algebarsku notaciju, pa se za ǌih rexavaǌe alge-
barskih jednaqina nije postavǉalo. Naravno, rexavali su probleme koji bi se
mogli zapisati u obliku linearnih jednaqina, pa i nekih kvadratnih, no sred-
stava za ǌihovo eksplicitno zapisivaǌe nisu imali. Praktiqno (bar princi-
pijelno) rexavaǌe kvadratnih jednaqina rezultat je sredǌevekovnih arapskih
matematiqara.

Jedan od prvih rezultata renesansne matematike u Italiji jeste rexavaǌe
jednaqina tre²eg i qetvrtog stepena. Ako zanemarimo probleme nastale (u to
vreme) nekorix²eǌem negativnih brojeva, kao i pomalo nejasnu situaciju oko

1 Niels Henrik Abel (1802–1829), norvexki matematiqar
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kompleksnih, na±ene su eksplicitne formule, sliqne poznatim formulama za re-
xeǌa kvadratne jednaqine (naravno, nexto slo¼enije od ǌih).

Prirodno se postavilo pitaǌe – a daǉe? Posle verovatno vixe pokuxaja
da se na±u sliqne formule za jednaqinu petog stepena, izgleda da je italijanski
lekar (!) Rufini2 bio prvi koji je skupio hrabrost da javno iska¼e tvr±eǌe da
je takav zadatak neostvariv. Hrabrost je bila potrebna i zato xto je u to vreme
me±u matematiqarima bila uveliko prihva²ena qiǌenica da svaka algebarska
jednaqina (dakle, bilo kog stepena) ima rexeǌa (i to taqno onoliko koliki je
ǌen stepen) u skupu C kompleksnih brojeva. Istina, strogog dokaza jox nije
bilo, ali je i on usledio vrlo brzo (Gaus3, 1799. godine).

Rufini je pokuxao i da doka¼e svoje tvr±eǌe u kǌizi ,,Opxta teorija jedna-
qina“ (Teoria generale delle equazioni) objavǉenoj u Boloǌi 1798. godine. ǋegov
dokaz, me±utim, nije bio potpun, pa je slava konaqnog rexeǌa ipak pripala mla-
dom norvexkom matematiqaru Abelu, koji je svoj dokaz objavio u prvom tomu
tada formiranog qasopisa Crelle’s Journal für Mathematik4 1826. godine. Na-
slov qlanka bio je ,,Dokaz nemogu²nosti algebarskog rexavaǌa jednaqina stepe-
na ve²eg od qetiri“ (Démonstration de l’imposibilité de la résolution algébraique
des équations générales qui dépassent le quatrieme degré).

Dokaz koji navodimo koristi neka kasnija tvr±eǌa Kronekera5, Gausa i
samog Abela. Da bismo malo skratili izlagaǌe, ograniqi²emo se sluqajem je-
dnaqina qiji je stepen prost broj ve²i ili jednak 5.

2. Pomo�ni pojmovi i tvr�eǌa

Precizira²emo najpre neke pojmove koje ²emo koristiti. Pretpostavǉa²emo
da je qitaocu poznat pojam poǉa, dakle algebarske strukture u kojoj se mogu
neograniqeno izvoditi qetiri osnovne raqunske operacije (naravno, sem deǉeǌa
nulom). Najjednostavnije poǉe kojim ²emo se baviti je poǉe Q racionalnih
brojeva.

Ako je P proizvoǉno potpoǉe poǉa C kompleksnih brojeva, a α, β, γ, . . . neki
elementi iz C \P, poǉe P ′ = P[α, β, γ, . . . ] predstavǉa²e skup svih racionalnih
funkcija od elemenata α, β, γ, . . . , sa koeficijentima iz P. Recimo,

Q[
√

2] = {x + y
√

2 | x, y ∈ Q}.
Funkcija f(x), odnosno jednaqina f(x) = 0 u poǉu P je funkcija, odnosno jedna-
qina, qiji su koeficijenti elementi poǉa P.

Polinom

F (x) = Axn + Bxn−1 + · · · , i odgovaraju²a jednaqina F (x) = 0

2 Paolo Ruffini (1765–1822), italijanski lekar i matematiqar
3 Carl Friedrich Gauss (1777–1855), nemaqki matematiqar
4 Kreleov qasopis je jedan od najstarijih matematiqkih qasopisa koji bez prekida i danas

izlazi. Sadaxǌi naslov mu je Journal für die reine und angewandte Mathematik.
5 Leopold Kronecker (1823–1891), nemaqki matematiqar
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iz poǉa P su rastavǉivi u P ako se F (x) mo¼e predstaviti kao proizvod poli-
noma iz P koji su maǌeg stepena. Ukoliko to nije mogu²e, taj polinom i jednaqina
su nerastavǉivi. Na primer, polinom x2 − 10x + 7 je nerastavǉiv u Q ali je
rastavǉiv u Q[

√
2]:

x2 − 10x + 7 = (x− 5− 3
√

2)(x− 5 + 3
√

2).

Stav 1 (Abel6). Ako je p prost broj, a broj C ∈ P nije p-ti stepen
broja iz P, tada je jednaqina

xp = C

nerastavǉiva u poǉu P.
Dokaz. Pretpostavimo da je xp − C = 0 rastavǉiva, tako da je

xp − C = ϕ(x)ψ(x),

gde su ϕ i ψ polinomi u P qiji slobodni qlanovi A i B su brojevi iz P. Ako je
r neki koren jednaqine xp = C, tada su i rε, rε2, . . . , rεp−1 tako±e ǌeni koreni,
gde je ε kompleksni p-ti koren iz jedinice. Tada slobodni qlanovi polinoma ϕ
i ψ (do na znak) iznose A = rµεM i B = rνεN . Kako je µ + ν = p, brojevi µ i ν
su uzajamno prosti, pa postoje celi brojevi h i k takvi da je µh + νk = 1. Na
taj naqin za proizvod K stepena Ah i Bk dobijamo vrednost rεhM+kN i, dakle,
vrednost Kp = rp = C za p-ti stepen broja K ∈ P. To protivreqi pretpostavci
o broju C, qime je stav dokazan.

Stav 2 (Xeneman7). Ako polinom

f(x) = C0 + C1x + · · ·+ CN−1x
N−1 + xN

ima celobrojne koeficijente koji su svi deǉivi prostim brojem p, pri qemu
C0 nije deǉiv sa p2, tada je f(x) nerastavǉiv nad Q.

Dokaz. Pretpostavimo da se f mo¼e predstaviti kao f = ϕψ, gde je

ϕ = a0 + a1x + · · ·+ am−1x
m−1 + xm,

ψ = b0 + b1x + · · ·+ bn−1x
n−1 + xn.

Prema jednom Gausovom stavu, koeficijenti a i b moraju biti celi brojevi. Mno-
¼eǌem i upore±ivaǌem dobijamo da je

C0 = a0b0, C1 = a0b1 + a1b0, C2 = a0b2 + a1b1 + a2b0, . . .

Znamo da p | C0, a p2 - C0. Zato je jedan od brojeva a0, b0 deǉiv sa p, a drugi
nije. Neka je, na primer, p | a0 i p - b0. Iz druge jednakosti onda sledi da
p | a1, zatim iz tre²e da p | a2 itd. Najzad, dobija se da p | am = 1, xto je
kontradikcija.

6N. H. Abel, Œuvre complètes, vol. II, p. 196.
7Schoenemann, Crelle’s Journal, 32, 1846.
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Teorema 1 (Abelova8 teorema o nerastavǉivim polinomima). Neka su f i
F polinomi nad P, pri qemu je f nerastavǉiv. Ako je jedan koren jednaqine
f(x) = 0 ujedno koren jednaqine F (x) = 0, tada su svi koreni prve jednaqine
ujedno koreni druge. Xtavixe, F (x) je deǉiv sa f(x) bez ostatka, tj.

F (x) = f(x)F1(x),

gde je F1(x) tako�e polinom nad P.
Dokaz. Primeni²emo Euklidov algoritam za nala¼eǌe najve²eg zajedniq-

kog delioca polinoma f i F . Posle odre±enog broja deǉeǌa (u kojima su svi
koeficijenti polinomi nad P) dolazimo do jednakosti oblika

F (x) = F1(x)g(x), f(x) = f1(x)g(x),

kao i
V (x)F (x) + v(x)f(x) = g(x).

Neka je α koren jednaqine f = 0 koji je ujedno koren jednaqine F = 0. To znaqi da
polinomi f i F imaju bar jedan zajedniqki faktor (x−α), koji je onda qinilac i
polinoma g (koji je nad P). Kako je f nerastavǉiv, to je mogu²e jedino u sluqaju
da je f1(x) ≡ 1 i f(x) = g(x), a tada je

F (x) = F1(x)f(x),

xto je i trebalo dokazati.

Posledica 1. Ako je koren jednaqine f(x) = 0, koja je nerastavǉiva
nad P, ujedno koren jednaqine F (x) = 0 u P koja je stepena ni�eg od f , onda
su svi koeficijenti polinoma F jednaki nuli.

Posledica 2. Ako je f(x) = 0 nerastavǉiva jednaqina nad P, tada ne
postoji druga nerastavǉiva jednaqina nad P koja ima zajedniqki koren sa
f(x) = 0.

Najqex²i oblik proxirivaǌa nekog brojnog poǉa P jeste kada mu prikǉu-
qujemo koren nerastavǉive jednaqine (nad P)

(1) f(x) = xn + a1x
n−1 + · · ·+ an = 0.

Tada va¼i

Stav 3. Svaki broj iz poǉa P[α], gde je α koren nerastavǉive jednaqine
(1) stepena n, mo�e se, i to na jedinstven naqin, prikazati kao polinom
(n− 1)-og stepena od α sa koeficijentima iz poǉa P.

Dokaz. Broj ζ ∈ P ′ = P[α] je definisan kao rezultat zamene broja α u
racionalnu funkciju nad P, tj. mo¼e se predstaviti kao ζ = Φ(α)/Ψ(α), gde su

8N. H. Abel, Crelle’s Journal, 4, 1829.
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Φ i Ψ polinomi nad P. Kako je αn = −a1α
n−1 − · · · − an, svaki stepen broja α

ve²i ili jednak od n mo¼e se izraziti preko stepena αn−1, . . . , α, pa mo¼emo
pisati ζ = ϕ(α)/ψ(α), gde su ϕ i ψ polinomi nad P stepena najvixe n− 1.

Kako f(x) i ψ(x) nemaju zajedniqki faktor, mogu se na²i polinomi u(x) i
v(x) nad P, takvi da je u(x)ψ(x) + v(x)f(x) = 1. Ako u ovu jednakost zamenimo
x = α, kako je f(α) = 0, dobijamo da je u(α)ψ(α) = 1, tj. ζ = ϕ(α)u(α). Ako
izraz na desnoj strani izmno¼imo i jox jednom sve stepene broja α ve²e ili
jednake od n izrazimo preko stepena najvixe n− 1, dobijamo da je

ζ = c0 + c1α + · · ·+ cn−1α
n−1,

gde su cν ∈ P.

Jedinstvenost ovog predstavǉaǌa se lako dokazuje.

Razmotrimo sada nexto opxtiju situaciju kada nerastavǉiv polinom nad P
prostog stepena p postaje rastavǉiv proxirivaǌem poǉa korenom nekog drugog
nerastavǉivog polinoma.

Stav 4. Nerastavǉiva jednaqina prostog stepena p u poǉu P mo�e po-
stati rastavǉiva proxirivaǌem poǉa P korenom neke druge nerastavǉive
jednaqine samo ako je stepen te druge jednaqine deǉiv sa p.

Dokaz. Neka su f(x) = 0 i g(x) = 0 dve nerastavǉive jednaqine nad poǉem
P, pri qemu su im stepeni, redom, p i q (p je prost). Pretpostavimo da f postaje
rastavǉiva proxirivaǌem poǉa P korenom α jednaqine g(x) = 0. Tada se f mo¼e
predstaviti kao proizvod f(x) = ϕ(x, α)ψ(x, α), gde su polinomi ϕ i ψ, redom,
stepena m i n.

Za neki racionalan broj r, polinom nad P
u(x) = f(r)− ϕ(r, x)ψ(r, x)

anulira se za x = α. Prema Abelovoj teoremi 1, polinom u(x) se anulira za
sve korene α, α′, α′′, . . . nerastavǉive jednaqine g(x) = 0. Zato, na primer,
jednakost

f(x)− ϕ(x, α′)ψ(x, α′) = 0

va¼i za svako racionalno x, pa ona va¼i za sve vrednosti od x. Dakle, imamo
jednakost

f(x) = ϕ(x, α′)ψ(x, α′),

i sliqno za sve korene jednaqine g(x) = 0.
Iz q jednakosti

f(x) = ϕ(x, α)ψ(x, α), f(x) = ϕ(x, α′)ψ(x, α′), . . .

koje tako dobijamo, mno¼eǌem sledi

f(x)q = Φ(x)Ψ(x),
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gde su Φ i Ψ proizvodi po q polinoma ϕ(x, α), ϕ(x, α′), . . . , odnosno ψ(x, α),
ψ(x, α′), . . . Kako je svaki od tih proizvoda simetriqna funkcija korena jedna-
qine g(x) = 0, on se mo¼e izraziti racionalno preko koeficijenata jednaqine
g(x) = 0 (i preko x), pa su Φ(x) i Ψ(x) polinomi nad P.

Svaki od polinoma Φ(x) i Ψ(x) se anulira bar za jedan koren nerastavǉive
jednaqine f(x) = 0, pa se oni mogu podeliti sa f(x) bez ostatka. Kako je f
nerastavǉiv, nijedan drugi delilac nije mogu², pa kao rezultat dobijamo da je

Φ(x) = f(x)µ, Ψ(x) = f(x)ν ,

pri qemu je µ + ν = q. Pore±eǌem stepena levih i desnih strana dobijamo da je
mq = µp i nq = νp, odakle, kako su m i n maǌi od p, sledi da p | q.

3. Algebarski rexive jednaqine

Pre±imo sada na formulaciju i dokaz osnovnog tvr±eǌa. Za jednaqinu n-tog
stepena u poǉu P re²i ²emo da je algebarski rexiva ako se ǌeno rexeǌe mo¼e
izraziti (sem pomo²u qetiri raqunske radǌe) pomo²u konaqno mnogo operacija
korenovaǌa, izvrxenih nad koeficijentima date jednaqine. Drugim reqima, ako
se ǌen koren ω mo¼e odrediti slede²im postupcima:

1. Nala¼eǌe a-tog korena α = a
√

P nekog elementa iz P (koji nije a-ti
stepen elementa iz P) i formiraǌe proxireǌa A = P[α].

2. Nala¼eǌe b-tog korena β = b
√

A nekog elementa iz A (koji nije b-ti stepen
elementa iz A) i formiraǌe proxireǌa B = A[β] = P[α, β].

3. Nala¼eǌe c-tog korena γ = c
√

B nekog elementa iz B (koji nije c-ti stepen
elementa iz B) i formiraǌe proxireǌa C = B[γ] = P[α, β, γ], i tako daǉe, dok
ova sukcesivna proxireǌa ne dovedu do poǉa kojem pripada tra¼eni koren ω i
u kojem polinom f postaje rastavǉiv (s obzirom da poseduje faktor x− ω).

Ovde se podrazumeva da su svi izlo¼ioci korena a, b, c, . . . prosti brojevi.
Ovo oqigledno ne predstavǉa ograniqeǌe.

Da bismo malo skratili izlagaǌe, ograniqi²emo se na jednaqine f(x) = 0
sa racionalnim koeficijentima, tako da je P = Q, uz pretpostavku da je f
nerastavǉiv polinom nad Q stepena n koji je prost broj.

Prvo proxireǌe ²emo izvrxiti n-tim korenom iz jedinice

α = η = n
√

1 = cos
2π

n
+ i sin

2π

n
.

Prema stavu 4, ovo proxireǌe jox uvek ne qini f rastavǉivim, jer je η koren
jednaqine xn−1 + xn−2 + · · ·+ x + 1 = 0 qiji je stepen maǌi od n.

Tako±e, sa svakim proxireǌem nekim korenom koji jox uvek ne qini f ra-
stavǉivim, izvrxi²emo i proxireǌe kompleksnim konjugatom tog korena. Ovo
nekad mo¼e biti suvixno, ali svakako ne²e nixta pokvariti.
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Teorema 2 (Kroneker9). Ako je f(x) = 0 algebarski rexiva jednaqina
qiji stepen je prost broj i koja je nerastavǉiva nad poǉem Q racionalnih
brojeva, onda ona ima ili taqno jedan realan koren ili iskǉuqivo realne
korene.

Dokaz. Pretpostavimo da je λ = l
√

K koren pomo²u kojeg dobijamo pro-
xireǌe u kojem je polinom f rastavǉiv, dakle pretpostavimo da je f jox uvek
nerastavǉiv u nekom poǉu K (kome pripada broj K), ali postaje rastavǉiv u
L = K[λ]:

f(x) = ϕ(x, λ)ψ(x, λ)χ(x, λ) · · · .

Ovde su faktori ϕ, ψ, χ, . . . nerastavǉivi polinomi u L (ali svakako nisu
polinomi u K), qiji koeficijenti su polinomi od λ u K.

Kako, prema stavu 4, prost broj n mora biti delilac prostog broja l, to
mora biti l = n.

Jednaqina xl = K, koja je nerastavǉiva u K prema Abelovom stavu 1, ima l
korena:

λ0 = λ, λ1 = λη, . . . , λν = λην , . . . , λn−1 = ληn−1.

Kako je ϕ(x, λ) delilac polinoma f(x), onda ϕ(x, λν) tako±e deli f(x) (v. dokaz
stava 4).

Doka¼imo da su svih n polinoma ϕ(x, λν) nerastavǉivi u L. Zaista, kao u
dokazu stava 4, iz ϕ(x, λν) = u(x, λν)v(x, λν) bi sledilo ϕ(x, λ) = u(x, λν)v(x, λ),
no ta jednakost je nemogu²a jer je ϕ(x, λ) nerastavǉiv u L.

Doka¼imo sada da su svih n polinoma ϕ(x, λν) razliqiti me±u sobom. Pret-
postavimo, suprotno, da je ϕ(x, ληµ) = ϕ(x, λην). Kao i pre, ovde se λ mo¼e
zameniti sa ληn−µ, odakle sledi

ϕ(x, λ) = ϕ(x, λH),

gde je H koren iz jedinice ην−µ. Ovde se λ opet mo¼e zameniti sa λH, xto daje

ϕ(x, λH) = ϕ(x, λH2).

Nastavǉaǌem ovog postupka dobija se

ϕ(x, λ) = ϕ(x, λH) = ϕ(x, λH2) = · · · ,

dakle i

ϕ(x, λ) =
ϕ(x, λ) + ϕ(x, λH) + · · ·+ ϕ(x, λHn−1)

n
.

Desna strana ove jednakosti, me±utim, kao simetriqna funkcija n korena λ, λH,
. . . jednaqine xn = K, jeste polinom od x nad K, tako da je f(x) tako±e polinom
od x nad K. To se ne sla¼e sa pretpostavkama uqiǌenim o polinomu f(x).

Iz dokazanih qiǌenica sledi da je f(x) deǉiv proizvodom Φ(x) n razliqi-
tih faktora ϕ(x, λ), ϕ(x, λη), . . . , ϕ(x, ληn−1) koji su nerastavǉivi u L,

f(x) = Φ(x)U(x),

9L. Kronecker, Monatsberichte der Berliner Akademie, 1856.
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gde je Φ (kao simetriqna funkcija korena jednaqine xn = K), pa zato i U polinom
od x u K. Kako f(x) nije rastavǉiv u K, U mora biti jednak 1, pa je

f(x) = Φ(x) = ϕ(x, λ)ϕ(x, λη) · · ·ϕ(x, ληn−1).

Pretpostavǉena rastavǉivost polinoma f(x) u L mora biti rastavǉivost
na linearne faktore. Dakle, ako su ω, ω1, . . . , ωn−1 koreni polinoma f i x−ω,
x− ω1, . . . x− ωn−1 odgovaraju²i linearni faktori, onda je

x− ω = ϕ(x, λ), x− ω1 = ϕ(x, λη), . . . , x− ωn−1 = ϕ(x, ληn−1),

pa je zato

ω = K0 + K1λ + K2λ
2 + · · ·+ Kn−1λ

n−1,

ω1 = K0 + K1λ1 + K2λ
2
1 + · · ·+ Kn−1λ

n−1
1 ,

...

ωn−1 = K0 + K1λn−1 + K2λ
2
n−1 + · · ·+ Kn−1λ

n−1
n−1,

gde svi Kν ∈ K.

Jednaqina f(x) = 0 je neparnog stepena (sa realnim koeficijentima), pa ona
ima bar jedan realan koren. Neka je to ω = K0 + K1λ + K2λ

2 + · · ·+ Kn−1λ
n−1.

Razlikova²emo daǉe slede²a dva mogu²a sluqaja.

1. Osnova K korena λ je realna.

2. Osnova K je kompleksna.

Sluqaj 1. Ovde mo¼emo da pretpostavimo da je λ realan, jer n-ti koreni
jedinice pripadaju poǉu K. U tom sluqaju kompleksni konjugat broja ω je

ω̄ = K0 + K1λ + · · ·+ Kn−1λ
n−1,

gde svi Kν ∈ K. Iz ω̄ = ω sledi da je

(K0 −K0) + (K1 −K1)λ + · · ·+ (Kn−1 −Kn−1)λn−1 = 0,

a odatle prema stavu 3 sledi da je Kν = Kν za svako ν. Dakle, brojevi K0, K1,
. . . , Kn−1 su tako±e realni.

Xtavixe,
ων = K0 + K1λν + · · ·+ Kn−1λ

n−1
ν

i
ωn−ν = K0 + K1λn−ν + · · ·+ Kn−1λ

n−1
n−ν .

Me±utim, kako su brojevi λν = λην i λn−ν = ληn−ν = λη−ν kompleksno konju-
govani, sledi da su ων i ωn−ν tako±e kompleksno konjugovani. Dakle, u sluqaju
1 jednaqina f(x) = 0 ima jedan realan koren i (n − 1)/2 parova kompleksno
konjugovanih korena (ω1 i ωn−1, ω2 i ωn−2 itd).
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Sluqaj 2. Sada, osim korenom λ = n
√

K, izvrximo proxirivaǌe poǉa i
kompleksnim konjugatom λ̄ = n

√
K, xto znaqi da je u proxireǌe ,,uxla“ i realna

vrednost Λ = λλ̄.

Da je proxireǌe brojem Λ = n
√

KK samo po sebi bilo dovoǉno da uqini f(x)
rastavǉivim, to bi znaqilo da smo u situaciji kao u sluaqju 1. Zato mo¼emo
da pretpostavimo da je f(x) jox uvek nerastavǉiv u K[Λ] i ne postaje rastavǉiv
bez dodatnog proxirivaǌa pomo²u λ.

Iz
ω = K0 + K1λ + · · ·+ Kn−1λ

n−1

sledi da je

ω̄ = K0 + K1λ̄ + · · ·+ Kn−1λ̄
n−1

= K0 + K1

(
Λ
λ

)
+ · · ·+ Kn−1

(
Λ
λ

)n−1

,

a odatle, zbog ω̄ = ω, i da je

K0 + K1λ + · · ·+ Kn−1λ
n−1 = K0 + K1

(
Λ
λ

)
+ · · ·+ Kn−1

(
Λ
λ

)n−1

.

U posledǌoj jednakosti svi brojevi sem λ pripadaju poǉu K(Λ) i, kako je jedna-
qina xn = K (prema Abelovom stavu 1) nerastavǉiva u tom poǉu, mo¼emo u toj
jednaqini da λ zamenimo proizvoǉnim korenom λν jednaqine xn = K.

Ako to uqinimo i uzmemo u obzir da je

Λ
λν

=
Λ

λην
=

λ̄

ην
= λ̄η̄ν = λην = λ̄ν ,

dobijamo da je

K0 + K1λν + · · ·+ Kn−1λ
n−1
ν = K0 + K1λ̄ν + · · ·+ Kn−1λ̄

n−1
ν ,

tj. ων = ω̄ν . Dakle, svi koreni jednaqine f(x) = 0 su realni.
Time je tvr±eǌe teoreme dokazano.
Iz dokazane Kronekerove teoreme 2 lako sledi zakǉuqak koji smo ¼eleli.

Posledica 3 (Abel). Za svaki prost broj p ve�i ili jednak 5 postoji
jednaqina stepena p koja nije algebarski rexiva.

Dokaz. Posmatrajmo jednaqinu

x5 − ax− b = 0,

gde su a i b prirodni brojevi deǉivi prostim brojem q, pri qemu b nije deǉiv
sa q2 i takvi da je 44a5 > 55b4. Prema Xenemanovom stavu 2, ova jednaqina
je nerastavǉiva. Primena standardne tehnike tzv. Xturmovog10 niza (v. npr.

10 Jacques Charles François Sturm (1803–1855), francuski matematiqar
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[2] ili [3]) daje zakǉuqak da ova jednaqina ima taqno 3 realna korena (i dva
kompleksna). Dakle, ona ne zadovoǉava uslov koji bi sledio iz Kronekerove
teoreme kada bi bila algebarski rexiva.

Sliqno se konstruixe primer u sluqaju p = 7 (uslov je 66a7 > 77b6), kao i
za bilo koji drugi prost broj p > 5.
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