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JEDNA ALGEBARSKA NEJEDNAKOST
I ǋENE POSǈEDICE

Nejednakost izme±u aritmetiqke i geometrijske sredine (AG-nejednakost) za
dva pozitivna broja x i y, koja glasi

(1)
x + y

2
=
√

xy, x, y > 0,

dobro je poznata mnogim uqenicima. Oni su je qesto koristili pri dokazivaǌu
drugih te¼ih nejednakosti. Recimo i to jox da vrijedi jednakost u (1) ako i
samo ako je x = y.

U ovom qlanku ²emo razmatrati jednu posǉedicu ove nejednakosti,

(2)
u

v
+

v

u
> 2, u, v > 0.

Vrijedi jednakost u (2) samo u sluqaju u = v. Sada ²emo pokazati kako se neje-
dnakost (2), mada naizgled veoma prosta, mo¼e efikasno koristiti za dokazivaǌe
mnogo te¼ih nejednakosti. Ovo ²emo demonstrirati na nekoliko interesantnih
primjera.

Primjer 1. Dokazati da vrijedi nejednakost

(3) a + b + c > 2(
√

ab +
√

bc−
√

ab),

gdje su a, b, c > 0.
Dokaz. Datu nejednakost napiximo u obliku a+b+c+2

√
ab > 2

√
c(
√

a+
√

b),
odnosno

(
√

a +
√

b)2 + c√
c(
√

a +
√

b)
> 2, tj.

√
a +

√
b√

c
+

√
c√

a +
√

b
> 2,

xto je taqno na osnovu nejednakosti (2) uzimaju²i da je u =
√

a +
√

b√
c

, v =√
c√

a +
√

b
. Dakle, nejednakost (3) je taqna. Vrijedi u ǌoj jednakost ako je u = v,

tj.
√

a +
√

b =
√

c.

Primjer 2. Dokazati da vrijedi nejednakost

(4) a2 + b +
√

a +
√

ab(a
√

b− 4
√

a),

ako je a > 0, b > 0.
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Dokaz. Datu nejednakost napiximo u obliku

(5) a2 + b +
√

a + ab
√

a− 4a
√

b > 0.

Ako je a = 0 ili b = 0, tada je nejednakost (5), odnosno ǌoj ekvivalentna neje-
dnakost (4) oqigledno taqna. Ako je a 6= 0 i b 6= 0, tj. a

√
b > 0, to dijele²i obje

strane nejednakosti (5) sa a
√

b, dobijamo ǌoj ekvivalentnu nejednakost

a√
b

+

√
b

a
+

1√
ab

+
√

ab− 4 > 0,

tj.
a√
b

+

√
b

a
+

1√
ab

+
√

ab > 4, a ova nejednakost je taqna zbog (2) jer je sada

a√
b

+

√
b

a
> 2 i

1√
ab

+
√

ab > 2.

Dakle, nejednakost (5) je taqna pa je taqna i ǌoj ekvivalentna data nejednakost
(4). Jednakost u (4) vrijedi samo u sluqaju kada je a =

√
b i

√
ab = 1, tj.

a = b = 1.
Primjer 3. Dokazati nejednakost

(6)
2x2 + 1√
4x2 + 1

> 1 za sve x ∈ R.

Dokaz. Imamo
2x2 + 1√
4x2 + 1

=
1
2
· 4x2 + 1 + 1√

4x2 + 1
=

1
2

(√
4x2 + 1 +

1√
4x2 + 1

)
.

Sada data nejednakost postaje
1
2

(√
4x2 + 1 +

1√
4x2 + 1

)
> 1, odnosno

(7)
√

4x2 + 1 +
1√

4x2 + 1
> 2.

Nejednakost (7) je taqna, ona slijedi iz nejednakosti (2) stavǉaju²i da je u =√
4x2 + 1, v = 1. Jednakost vrijedi samo u sluqaju kada je

√
4x2 + 1 = 1, tj.

x = 0.
Primjer 4. Dokazati da vrijedi nejednakost

(8)
a

b
+

b

c
+

c

a
> a + b

b + c
+

b + c

a + b
+ 1.

gdje su a > 0, b > 0, c > 0.
Dokaz. Nakon mno¼eǌa date nejednakosti (8) sa (a + b)(b + c) > 0, dobijamo

ǌoj ekvivalentnu nejednakost

a(a + b)(b + c)
b

+
b(a + b)(b + c)

c
+

c(a + b)(b + c)
a

> (a+b)2+(b+c)2+(a+b)(b+c),

odnosno, poslije sre±ivaǌa,

(9)
a2c

b
+

b2(a + b)
c

+
bc(b + c)

a
> 2b2 + 2bc + ab.
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Lijevu stranu nejednakosti (9) mo¼emo napisati u obliku

1
2

(
a2c

b
+

b3

c

)
+

1
2

(
a2c

b
+

bc2

a

)
+

1
2

(
b3

c
+

c2b

a

)
+ b2

( c

a
+

a

c

)
,

i zato zbog (1) i (2):

a2c

b
+

b2(a + b)
c

+
bc(b + c)

a
>

√
a2c

b
· b3

c
+

√
a2c

b
· bc2

a
+

√
b3

c
· c2b

a
+ 2b2

= ab +
(√

ac3 +

√
b4c

a

)
+ 2b2 > ab + 2

4

√
ac3 · b4c

a
+ 2b2

= ab + 2bc + 2b2,

tj. nejednakost (9) je taqna pa je taqna i ǌoj ekvivalentna data nejednakost (8).
Vrijedi jednakost samo u sluqaju a = b = c.

Primjer 5. Odrediti trocifren broj abc (a 6= 0, b 6= 0, c 6= 0) za koga va¼i
a + b + c = 9 i 9a2 + 9b2 + 9c2 − 6abc 6 a3 + b3 + c3.

Rjexeǌe. Datu nejednakost mo¼emo napisati u obliku a2(9−a)+ b2(9− b)+
c2(9− c) 6 6abc, odnosno zbog a + b + c = 9:

a2(b + c) + b2(c + a) + c2(a + b) 6 6abc.

Nakon dijeǉeǌa gorǌe nejednakosti sa abc > 0, dobijamo:
a

b
+

b

a
+

a

c
+

c

a
+

b

c
+

c

b
6 6.

Kako primjenom nejednakosti (2) dobijamo da vrijedi
a

b
+

b

a
+

a

c
+

c

a
+

b

c
+

c

b
> 6,

slijedi da vrijedi samo jednakost
a

b
+

b

a
+

a

c
+

c

a
+

b

c
+

c

b
= 6,

i to u sluqaju kada je a = b = c. Tada je a + b + c = 3a ( = 3b = 3c), odnosno
a = b = c = 3. Dakle, u pitaǌu je broj abc = 333.

Primjer 6. Ako su a, b, c du¼ine stranica trougla, dokazati da vrijedi
nejednakost

(10) a2(b + c) + b2(c + a) + c2(a + b) > 48(s− a)(s− b)(s− c),

gdje je s = 1
2 (a + b + c) poluobim trougla.

Dokaz. Zbog s = 1
2 (a + b + c) data nejednakost (10) je ekvivalentna nejedna-

kosti

(11) a2(b + c) + b2(c + a) + c2(a + b) > 6(b + c− a)(c + a− b)(a + b− c).

Dokaza²emo sada da vrijedi nejednakost

(12) abc > (b + c− a)(c + a− b)(a + b− c).

Poxto je u trouglu b + c− a > 0, c + a− b > 0, a + b− c > 0, to imamo, na osnovu

nejednakosti (1),
(b + c− a) + (c + a− b)

2
>

√
(b + c− a)(c + a− b), odnosno

(13) c >
√

(b + c− a)(c + a− b).
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Analogno dobijamo i ove nejednakosti:

(14) a >
√

(c + a− b)(a + b− c) i b >
√

(b + c− a)(a + b− c).

Oqigledno nakon mno¼eǌa nejednakosti (13) i (14) dobijamo nejednakost (12).
Sada ²emo dokazati da vrijedi nejednakost

(15) a2(b + c) + b2(c + a) + c2(a + b) > 6abc,

koja je poslije dijeǉeǌa sa abc > 0 ekvivalentna nejednakosti

a

b
+

b

a
+

b

c
+

c

b
+

c

a
+

a

c
> 6.

a ova nejednakost je oqigledno taqna na osnovu (2). Sada na osnovu nejednakosti
(15) i (12) dobijamo nejednakost (11), odnosno datu nejednakost (10). Vrijedi
jednakost u (10) ako i samo ako je a = b = c, tj. kada je u pitaǌu jednakostraniqni
trougao.

Primjer 7. Dokazati da vrijedi nejednakost

(16)
a

b + c
+

b

c + a
+

c

a + b
> 3

2
, (a, b, c > 0).

Dokaz. U literaturi je dato mnogo raznih dokaza ove nejednakosti koja je
poznata kao Nesbitova nejednakost. Mi ²emo dati jox jedan ǌen dokaz u kome
²emo koristiti nejednakost (2). Naime, koristi²emo nejednakost (2) u obliku:

c + a

b + c
+

b + c

c + a
> 2,

a + b

c + a
+

c + a

a + b
> 2,

b + c

a + b
+

a + b

b + c
> 2.

Nakon sabiraǌa ovih nejednakosti, dobijamo:

c + a

b + c
+

b + c

c + a
+

a + b

c + a
+

c + a

a + b
+

b + c

a + b
+

a + b

b + c
> 6,

tj.
2a + b + c

b + c
+

2b + c + a

c + a
+

2c + a + b

a + b
> 6, odnosno

2
(

a

b + c
+

b

c + a
+

c

a + b

)
+ 1 + 1 + 1 > 6,

a odavde
a

b + c
+

b

c + a
+

c

a + b
> 3

2
, xto je i trebalo dokazati. Vrijedi jednakost

u (16) ako i samo ako je a = b = c.

Primjer 8. Dokazati da za trougao ABC vrijedi nejednakost

(17)
a2

bc
+

b2

ca
+

c2

ab
> 4

(
sin2 α

2
+ sin2 β

2
+ sin2 γ

2

)
.

Dokaz. Iz kosinusne teoreme primjeǌene na trougao ABC imamo a2 = b2 +

c2 − 2bc cosα, odnosno 2 cos α +
a2

bc
=

b

c
+

c

b
, a odave na osnovu nejednakosti (2),

a2

bc
> 2(1− cosα) = 4 sin2 α

2
.
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Analogno dobijamo i nejednakosti
b2

ca
> 4 sin2 β

2
i

c2

ab
> 4 sin2 γ

2
. Nakon sabiraǌa

posǉedǌe tri nejednakosti, dobijamo datu nejednakost (17). Vrijedi jednakost u
(17) ako i samo ako je a = b = c, tj. kada je u pitaǌu jednakostraniqni trougao.

Primjer 9. Ako su α, β i γ unutraxǌi uglovi trougla ABC, dokazati da
vrijedi nejednakost
(18) √

sin α√
sinβ +

√
sin γ −√sin α

+
√

sin β√
sin γ +

√
sin α−√sin β

+
√

sin γ√
sinα +

√
sinβ −√sin γ

> 3.

Dokaz. Oznaqimo sa a, b, c du¼ine stranica datog trougla. Iz a < b+c lako
se izvodi da je

√
a <

√
b +

√
c, jer imamo:

a < b + c ⇐⇒ √
a <

√
b + c <

√
b + 2

√
bc + c =

√
(
√

b +
√

c)2 =
√

b +
√

c.

Sada je

x =
√

sin β +
√

sin γ −
√

sin α =

√
b

2R
+

√
c

2R
−

√
a

2R

=
1

2R
(
√

b +
√

c−√a) > 0,

tj.
√

sin β +
√

sin γ −√sin α > 0, te analogno:

y =
√

sin γ +
√

sin α−
√

sin β > 0 i z =
√

sinα +
√

sinβ −
√

sin γ > 0.

Pri tome je
√

sin α =
y + z

2
,
√

sin β =
z + x

2
,
√

sin γ =
x + y

2
, pa je lijeva strana

nejednakosti (17) koja se dokazuje:

y + z

2x
+

z + x

2y
+

x + y

2z
=

1
2

(
x

y
+

y

x
+

y

z
+

z

y
+

z

x
+

x

z

)
,

xto je ve²e od 1
2 · 6 = 3 na osnovu nejednakosti (2). Ovim je nejednakost (18)

dokazana. Jednakost vrijedi u (18) ako i samo ako je sin α = sin β = sin γ, tj.
a = b = c (jednakostraniqni trougao).

Na kraju ²emo dati i jedno poboǉxaǌe nejednakosti (2) koje smo obilato
koristili u ovom radu. Naime, dokaza²emo da vrijedi nejednakost

(19) an +
1
an

> 2 + n2

(
a +

1
a
− 2

)
,

ako je n ∈ N i a > 0.

Dokaz. Koristi²emo nejednakosti (AG) izme±u aritmetiqke i geometrijske
sredine n pozitivnih brojeva x1, x2, . . . , xn, u obliku

(20) x1 + x2 + · · ·+ xn > n n
√

x1 · x2 · . . . · xn.
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Sada imamo na osnovu (20):

(an − 1)2 = (a− 1)2(an−1 + an−2 + · · ·+ a + 1)2

> (a− 1)2(n n
√

an−1 · an−2 · . . . · a · 1)2

= (a− 1)2
(
n

n
√

a(n−1)+(n−2)+···+1+0
)2

= n2(a− 1)2




n

√
a

n(n−1)
2




2

= n2an−1(a− 1)2,

odnosno a2n− 2an + 1 > n2an−1(a2− 2a + 1), a odavde nakon dijeǉeǌa sa an > 0,

an +
1
an

> 2 + n2

(
a +

1
a
− 2

)
,

xto je i trebalo dokazati. Jednakost vrijedi za a = 1.
Napomena. Uzimaju²i da je a = n

√
t, t > 0, dobijamo iz (19):

(21) t +
1
t

> 2 + n2

(
n
√

t +
1
n
√

t
− 2

)
> 2,

jer je zbog (2): n
√

t +
1
n
√

t
> 2. Nejednakost (19) predstavǉa poboǉxaǌe nejedna-

kosti (2).
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