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JEDNA ZANIMǈIVA JEDNAKOST U TROUGLU
I ǋENE POSǈEDICE

Znamo da za trougao va¼e mnoge va¼ne teoreme. U ovom qlanku ²emo dati
jednu zanimǉivu jednakost u trouglu koja ima i neke interesantne posǉedice. Za
dokaz te jednakosti koristi²emo neke druge koje su i same vrijedne i zanimǉive.
Rijeq je o sǉede²oj jednakosti u trouglu1):
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gdje su taqke D, E i F podno¼ja visina trougla povuqenih iz vrhova A, B
i C redom na stranice BC, CA i AB, a taqke H1, H2 i H3 su taqke u kojima
produ¼eci visina sijeku opisanu kru¼nicu k trougla, dok su α, β i γ unutraxǌi
uglovi trougla (sl. 1).

Sl. 1 Sl. 2

Da bismo dokazali jednakost (1), dokaza²emo sada dvije teoreme o trouglu.

Teorema 1. Taqke H1, H2 i H3 koje su simetriqne ortocentru H s
obzirom na stranice BC, CA i AB datog trougla ABC le�e na opisanoj
kru�nici tog trougla.

1 Ovdje AH1 predstavǉa du¼, a AH1 du¼inu te du¼i.
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Dokaz. Prema sl. 1, zbog simetrije taqaka H i H1 s obzirom na stranicu
BC imamo:

∠BH1C = ∠BHC = ∠FHE.

Zbog normalnosti stranica trougla ABC i ǌegovih visina, imamo

∠FHE + ∠FAE = 180◦.

Prema tome je
∠BH1C + ∠BAC = 180◦,

pa su A, B, H1 i C kocikliqne taqke, tj. pripadaju istoj kru¼nici k, xto je
trebalo i dokazati.

Na temeǉu teoreme 1. je HD = DH1, HE = EH2 i HF = FH3 pa imamo
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Sada iz (1) i (2) vidimo da je dovoǉno da doka¼emo da je
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Da bismo dokazali jednakost (3), dokaza²emo da vrijedi opxtija jednakost. To
²e biti

Teorema 2. Ako je taqka S u unutraxǌosti datog trougla ABC i ako
prave AS, BS i CS sijeku stranice BC, CA i AB u taqama D, E i F , tada
vrijedi jednakost
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Dokaz. Neka su povrxine trouglova: P4ABC = P , P4BSC = p, P4ASC = q i
P4ASB = r. Trouglovi 4ASB i 4ASC imaju zajedniqku stranicu AS i visine
BK i CL (sl. 2); zato je
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a iz sliqnosti trouglova 4BDK ∼ 4CDL slijedi
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pa sada imamo:
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Osim toga je tako±e
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gdje posǉedǌa jednakost slijedi iz sliqnosti trouglova 4AMD i 4SND. Sli-
qno dobijamo da je:
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Konaqno dobijamo sabiraǌem reciproqnih vrijednosti triju posǉedǌih jedna-
kosti
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Ovim je teorema 2 dokazana.
Sada ako uzmemo da je S ≡ H, tada dobijamo iz (5) da je
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a ovo je jednakost (3) koju je trebalo dokazati.
Doka¼imo sada i jednakost (4).
Sa slike 1 vidimo jednakost uglova (periferijski uglovi nad istim lukom

kruga):

∠AH1B = ∠ACB = γ, ∠AH3C = ∠ABC = β, ∠BH2C = ∠BAC = α.

U pravouglom trouglu 4CEH2 je
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(zbog tg α tg β tg γ = tg α + tg β + tg γ), a ovo je jednakost (4) koju je trebalo
dokazati.

Iz jednakosti (2), (3) i (4) dobijamo sada datu jednakost (1).

Interesantno je napomenuti da vrijede i sǉede²e jednakosti:
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Dokaze ovih jednakosti prepuxtamo qitaocima.

Na kraju ²emo dati i jednu interesantnu posǉedicu jednakosti (1). Zbog

oqigledne nejednakosti
1
2
[(x − y)2 + (y − z)2 + (z − x)2] > 0, tj. x2 + y2 + z2 >

xy + yz + zx (x, y, z ∈ R) dobijamo da je
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a odatle je
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pa sada dobijamo iz (1)
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,

gdje jednakost vrijedi u sluqaju kada je tg α = tg β = tg γ, tj. α = β = γ = 60◦,
odnosno za jednakostraniqni trougao.

Nejednakost (6) predstavǉa interesantnu nejednakost koja se mo¼e uzeti za-
sebno kao jedno interesantno tvr±eǌe (problem).
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