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DIRIHLEOVA I REMZIJEVA TEOREMA

Egzistencija kombinatornih konfiguracija

F. P. Remzi1 je izveo teoremu, qiji je Dirihleov2 princip samo jedan si-
²uxni specijalan sluqaj. Remzijeva teorema osigurava egzistenciju izvesnih
brojeva, tzv. Remzijevih brojeva. Time se bavi ,,Remzijeva teorija“ u podruqju
moderne kombinatorike.

Neka je S proizvoǉan neprazan skup, P (S) partitivni skup skupa S,
(a1, a2, . . . , am) varijacija bez ponavǉaǌa elemenata skupa S, a (S1, S2, . . . , Sm)
varijacija elemenata skupa P (S). Ako je ak ∈ Sk za svako k ∈ {1, 2, . . . , m}, on-
da se varijacija (a1, a2, . . . , am) zove sistem razliqitih predstavnika (skra²eno
s.r.p) varijacije (S1, S2, . . . , Sm). Element ak ∈ Sk je predstavnik skupa Sk.

Dirihleov princip je jedan od najjednostavnijih principa kombinatorike.
Qesto se iskazuje u xaǉivoj formi kao ,,Princip pretinca, kutija ili golubar-
nika“. Preciznije, imamo:

Teorema 1 (Dirihle). Neka je {A1, A2, . . . , Ak} razbijaǌe (nk+1)-skupa
S na k blokova. Tada bar jedan od skupova A1, A2, . . . , Ak sadr�i ne maǌe
od n + 1 elemenata.

Dokaz. Pretpostavimo suprotno, tj. |Aj | 6 n za sve j ∈ {1, 2, . . . , k}. Tada je
|S| = |A1|+ |A2|+ · · ·+ |Ak| 6 kn, a to je kontradikcija sa uslovom |S| = nk+1.

Napomena 1. Neophodan uslov da za skupove S1, S2, . . . , Sm postoji s.r.p.
jeste da za svaki k ∈ {1, 2, . . . , m} i svaku k-kombinaciju {j1, j2, . . . , jk} elemenata
skupa {1, 2, . . . ,m} va¼i

|Sj1 ∪ Sj2 ∪ · · · ∪ Sjk
| > k.

Dakako, ovo je intuitivno jasno. Naqin zakǉuqivaǌa koji le¼i u osnovi Diri-
hleovog principa mo¼e se veoma efektno primeniti u sliqnim problemima.

Da je taj uslov i dovoǉan za postojaǌe razliqitih pretpostavki dokazao je
Hol (Filip Hall).

1Frank P. Ramsey (1903–1930), engleski matematiqar
2P.G.L. Dirichlet (1805–1859), nemaqki matematiqar
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Lema 1 (Hol, 1953). Neka za skupove S1, S2, . . . , Sm va�i neophodan
uslov za egzistenciju s.r.p. i neka svaki od tih skupova sadr�i ne maǌe od
n elemenata. Tada va�i:

1◦ ako je n 6 m, onda (S1, S2, . . . , Sm) ima bar n! s.r.p;

2◦ ako je n > m, onda (S1, S2, . . . , Sm) ima bar
n!

(n−m)!
s.r.p.

Dokaz. Provodi se matematiqkom indukcijom.
Napomena 2. Pretpostavimo li da ne postoji s.r.p. za (S1, S2, . . . , Sm).

Tada iz Holove teoreme sledi da postoje brojevi j1, j2, . . . , jp, takvi da va¼i:
1◦ 1 6 j1 < · · · < jp 6 m,
2◦ |Sj1 ∪ Sj2 ∪ · · · ∪ Sjp

| = q < p.
Konaqno imamo:

Lema 2. Neka je S n-skup i neka je S = S1 ∪ S2, S1 ∩ S2 = ∅. Ako je
n > q1 + q2 − 1 za q1, q2 ∈ N, onda je |S1| > q1 ili |S2| > q2.

Dokaz. Ako je |S1| 6 q1 − 1 i |S2| 6 q2 − 1, onda je |S| = |S1 ∪ S2| =
|S1|+ |S2| 6 q1 + q2 − 2, a to je kontradikcija.

Slaba forma Dirihleovog principa glasi: ako n + 1 predmeta bilo kako
rasporedimo u n kutija (pretinaca), onda bar jedna kutija sadr�i barem
dva od tih predmeta.

Napomena 3. Oqito je za n < q1+q2−1 mogu²e da va¼i |S1| 6 q1−1 i |S2| 6
q2−1, kao recimo u sluqaju S1 = {1, 2, . . . , q1−1}, S2 = {q1, q1+1, . . . , q1+q2−2}.

Uopxtavaju²i, dobijamo Remzijevu teoremu.

Teorema 2 (osnovna). Neka su r, q1, q2 ∈ N za koje va�i r > 1, q1 > r,
q2 > r. Tada postoji najmaǌi prirodan broj R(q1, q2; r) takav da za svaki
prirodan broj n > R(q1, q2; r) va�i tvr�eǌe:

ako je S proizvoǉan n-skup, Pr(S) skup svih r-podskupova skupa S i
Pr(S) = Φ1 ∪ Φ2 za Φ1 ∩ Φ2 = ∅, onda bar za jedan broj j ∈ {1, 2} postoji
qj-podskup skupa S qiji su svi r-podskupovi sadr�ani u familiji Φj.

Dokaz izvodimo matematiqkom indukcijom po q1, q2, r.
(a) Imamo jednakosti:

R(q1, q2; r) = q1 + q2 − 1, q1 > 1, q2 > 1,(1)

R(q1, r; r) = q1, q1 > r > 1,(2)

R(r, q2; r) = q2, q2 > r > 1.(3)

Dokazujemo na slede²i naqin.
Jednakost (1) sledi iz leme 2. Neka je daǉe n > q1, q2 = r.
Ako je Φ2 = ∅, onda je Φ1 = Pr(S), pa su svi r-podskupovi nekog q1-podskupa

skupa S sadr¼ani u familiji Φ1. Ako je Φ2 6= ∅, onda proizvoǉan r-skup A ∈ Φ2

ima samo jedan r-podskup (samog sebe), koji je sadr¼an u Φ2.
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Ako je n < q1, q2 = r i Φ2 = ∅, onda uopxte ne postoji q1-podskup skupa S,
a tako±e ne postoji r-podskup skupa S koji je sadr¼an u Φ2. Time je dokazana i
jednakost (2). Analogno se dokazuje jednakost (3).

(b) Neka za brojeve r > 2, q1 > r + 1 i q2 > r + 1 postoje brojevi p1 =
R(q1−1, q2; r), p2 = R(q1, q2−1; r), R(p1, p2; r−1), tako da za svaki od ǌih va¼i
uslov teoreme. Dovoǉno je jox dokazati da je

(4) R(q1, q2; r) 6 R(p1, p2; r − 1) + 1.

Daǉe, pretpostavimo da skup S sadr¼i vixe od R(p1, p2; r − 1) elemenata.
Neka je Pr(S) = Φ1 ∪ Φ2 uz Φ1 ∩ Φ2 = ∅ i neka je a0 proizvoǉni element

skupa S, S′ = S \{a0} i Pr−1(S′) = Φ′1∪Φ′2, pri qemu za svaki skup A ∈ Pr−1(S′)
i svako j ∈ {1, 2} va¼i A ∈ Φ′j akko A ∪ {a0} ∈ Φj . Budu²i da S′ sadr¼i bar
R(p1, p2; r − 1) elemenata, to je po induktivnoj pretpostavci taqno bar jedno od
slede²a dva tvr±eǌa:
(i) postoji p1-podskup W skupa S′ qiji svi (r− 1)-podskupovi pripadaju fami-

liji Φ′1;
(ii) postoji p2-podskup skupa S′ qiji svi (r − 1)-podskupovi pripadaju famili-

ji Φ′2.
Iz (i), budu²i da skup W sadr¼i R(q1 − 1, q2; r) elemenata i kako su svi

r-podskupovi skupa W sadr¼ani u Φ1 ∪ Φ2, va¼i:
(i1) postoji (q1 − 1)-podskup T1 skupa W qiji svi r-podskupovi pripadaju fami-

liji Φ1;
(i2) postoji q2-podskup T2 skupa W qiji su svi r-podskupovi sadr¼ani u Φ2.

Konaqno, ako va¼i (i1), onda je T1 ∪ {a0} q1-podskup skupa S qiji su svi
r-podskupovi sadr¼ani u Φ1. Ako va¼i (i2), onda je T2 q2-podskup skupa S qiji
su svi r-podskupovi sadr¼ani u Φ2.

Analogno se razmatra sluqaj kada va¼i (ii). Dokaz nejednakosti (4) je zavr-
xen, a time i dokaz teoreme 2.

Posledica 1. Neka su r, q1, q2, . . . , qm prirodni brojevi, takvi da je
r > 1, m > 2 i qj > r za sve j ∈ {1, 2, . . . , m}. Tada postoji najmaǌi prirodan
broj R(q1, q2, . . . , qm; r), takav da za svaki prirodan broj n > R(q1, q2, . . . , qm; r)
va�i:

ako je S proizvoǉan n-skup, Pr(S) skup svih r-podskupova skupa S i
Pr(S) = Φ1 ∪ Φ2 ∪ · · · ∪ Φm uz Φj ∩ Φk = ∅ za j 6= k, j, k ∈ {1, 2, . . . , m},
onda bar za jedan broj j ∈ {1, 2, . . . , m} postoji qj-podskup skupa S qiji su svi
r-podskupovi sadr�ani u familiji Φj.

Dokaz je jednostavan. Indukcijom po m dobijamo slede²e.
Za m = 2 dobijamo iskaz teoreme 2.
Neka je S n-skup i Pr(S) = Φ1 ∪ Φ2 ∪ · · · ∪ Φm uz Φj ∩ Φk = ∅ za j 6= k,

j, k ∈ {1, 2, . . . ,m}. Oznaqimo Φ′2 = Φ2 ∪ Φ3 ∪ · · · ∪ Φm, q′2 = R(q2, . . . , qm; r).
Tada imamo:



30 M. Obradovi²

ako je n > R(q1, q
′
2; r), onda postoji q1-podskup skupa S qiji su svi r-

podskupovi sadr¼ani u Φ1; ili

postoji q′2-podskup skupa S qiji su svi r-podskupovi sadr¼ani u Φ′2.
U drugom sluqaju iz induktivne pretpostavke sledi da bar za jedan broj

j ∈ {2, . . . , m} postoji qj-podskup skupa S qiji su svi r-podskupovi sadr¼ani
u Φj . Time je dokaz posledice zavrxen.

Napomena 4. Broj R(q1, q2; r) zove se (opxti) Remzijev broj.

Odre±ivaǌe Remzijevih brojeva je vrlo texko. Evo nekih gorǌih (doǌih)
procena:

25 6 R(4, 5; 2) 6 28,

34 6 R(4, 6; 2) 6 44.

Nadamo se da ²e niz zadatak koji slede ilustrovati snagu Remzijeve teoreme.

Zadaci

1. U grupi od 100 ǉudi postoji ili trojka me±usobnih neznanaca ili qetvorka
me±usobnih poznanika. Dokazati.

2. Za svako m > 3 postoji najmaǌi broj Cm takav da je Cm 6 n i va¼i slede²e:
ako od n taqaka u ravni nikoja trojka nije kolinearna, onda m od ǌih qine
temena konveksnog m-tougla. Dokazati.

3. Za q1, q2, a3 > 2 postoji broj R(q1, q2, q2; 2). Dokazati.

4. Ako stranice petougla obojimo plavom, a dijagonale crnom bojom, dobi-
jamo potpuni 5-graf, koji ne sadr¼i monohromatski 3-podgraf. Zato je
R(3, 3; 2) = 6. Obrazlo¼iti.
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