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0. Uvod

Ponekad je va¼no znati kako se rexeǌe diferencijalne jednaqine ponaxa u
zavisnosti od poqetnih uslova. Takva situacija se qesto pojavǉuje u varijaci-
onom raqunu i optimalnom upravǉaǌu. Zato nije qudno xto se ta problematika
vrlo dobro obra±uje upravo u literaturi iz ove oblasti. U kǌigama [1] i [2]
autori razmatraju rexeǌe Koxijevog problema

ẋ(t) = f(t, x(t)), x(τ) = ξ,

kao funkciju tri promenǉive x(t, τ, ξ), gde se pod ǌenom vrednox²u u taqki
(t, τ, ξ) podrazumeva vrednost rexeǌa Koxijevog problema u taqki t. U kla-
siqnom sluqaju, kada je funkcija f(t, x) neprekidna i ima neprekidan parcijalni
izvod po x, dokazano je da je funkcija x(t, τ, ξ) definisana na otvorenom skupu
i da je neprekidno diferencijabilna. Pri tom su eksplicitno dati parcijalni
izvodi ove funkcije po sve tri ǌene promenǉive.

U ovom tekstu dajemo pregled te teorije, jer smatramo da je ona interesantna
za xiri krug matematiqara.

U prvom paragrafu je dat aparat neophodan za razumevaǌe drugog paragrafa.
Uvode se prostori funkcija Ck

n[t0, t1] i operatori definisani na ǌima. Prvo
se uvode dva linearna ograniqena operatora: operator inkluzije i operator
diferenciraǌa. Zatim se uvode dva nelinearna operatora: operator Nemickog
i operator evaluacije. Za posledǌa dva operatora je dokazano da su neprekidno
diferencijabilni.

U drugom paragrafu se Koxijev problem transformixe u problem implici-
tne funkcije, onako kako je to ura±eno u kǌizi [2]. Primenom klasiqne teoreme o
implicitnoj funkciji na tako dobijeni problem dobija se da je funkcija x(t, τ, ξ)
definisana na otvorenom skupu i da je neprekidno diferencijabilna.

Izostavǉeni su dokazi teorema koje se pojavǉuju u standardnim univerzi-
tetskim u­benicima, ili koje se dokazuju na sliqan naqin kao neke teoreme iz
tih u­benika.
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1. O prostorima Ck
n[t0, t1]

Ako su k i n celi brojevi, k > 0, n > 1, pod Ck
n[t0, t1] podrazumevamo skup k

puta neprekidno diferencijabilnih funkcija koje preslikavaju odseqak [t0, t1] u
prostor Rn. Ako je k = 0, gorǌi indeks k izostavǉamo, a pod nula puta nepre-
kidno diferencijabilnim funkcijama podrazumevamo neprekidne funkcije. Ako
je n = 1, doǌi indeks n izostavǉamo. Ovaj skup postaje realan vektorski pro-
stor sa operacijama sabiraǌa i mno¼eǌa skalarom definisanim na standardan
naqin. Norma u ovom prostoru mo¼e da se definixe na razne naqine, o qemu
govori slede²a teorema.

Teorema 1.1. Formulama

‖x(·)‖ = max
06i6k

sup
t06t6t1

‖x(i)(t)‖,

‖x(·)‖p =
( k∑

i=0

( sup
t06t6t1

‖x(i)(t)‖)p

)1/p

,

‖x(·)‖′ = max{ max
06i<k

‖x(i)(t0)‖, sup
t06t6t1

‖x(k)(t)‖},

‖x(·)‖′p =
(k−1∑

i=0

‖x(i)(t0)‖p + ( sup
t06t6t1

‖x(k)(t)‖)p

)1/p

,

gde je p > 1, definisane su ekvivalentne norme ‖ · ‖, ‖ · ‖p, ‖ · ‖′ i ‖ · ‖′p na
prostoru Ck

n[t0, t1]. U odnosu na ǌih ovaj prostor je kompletan, tj. Banahov.

Slede²a teorema razmatra dva veoma va¼na ograniqena linearna operatora
qiji su domeni i kodomeni napred uvedeni Banahovi prostori.

Teorema 1.2. a) Ako je k > 0, onda je Ck
n[t0, t1] ⊆ Ck−1

n [t0, t1]. Operator
inkluzije Ik

n : Ck
n[t0, t1] → Ck−1

n [t0, t1], definisan sa Ik
nx(·) = x(·), linearan je

i ograniqen.
b) Ako je k > 0, operator diferenciraa Dk

n : Ck
n[t0, t1] → Ck−1

n [t0, t1], de-
finisan sa Dk

nx(·) = ẋ(·), linearan je i ograniqen.

Operator Nemickog je preslikavaǌe koje funkciji x(t) korespondira funk-
ciju f(t, x(t)). Slede²a teorema opisuje ǌegove osobine.

Teorema 1.3. a) Neka je G otvoren skup u R×Rn. Tada je skup

D = {x(·) ∈ Cn[t0, t1] | (∀t ∈ [t0, t1])(t, x(t)) ∈ G }
otvoren u Cn[t0, t1].

b) Neka je funkcija f(t, x) : G → Rm neprekidna. Operator Nemickog
F (x(·))(t) : D → Cm[t0, t1], koji se definixe sa

F (x(·))(t) = f(t, x(t)),

neprekidan je.
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c) Ako funkcija f ima neprekidan parcijalni izvod po x, onda je opera-
tor Nemickog F neprekidno diferencijabilan i

F ′(x(·))h(·)(t) = fx(t, x(t))h(t).

Dokaz. a) Neka je x(·) ∈ D. Grafik Γx(·) funkcije x(·) je kompaktan podskup
od G. Zato postoji r > 0, takvo da je (zatvorena) r-okolina Γrx(·) grafika Γx(·)
tako±e podskup od G. Kako je B[x(·), r] ⊆ Γrx(·), sledi da je kugla B[x(·), r]
sadr¼ana u skupu G. Dakle, skup D je okolina proizvoǉne taqke x(·) sadr¼ane
u ǌemu. Zato je skup D otvoren.

b) Neka je h(·) ∈ Cn[t0, t1], ‖h(·)‖ 6 r. Imamo da je

d(F (x(·) + h(·)), F (x(·))) = ‖F (x(·) + h(·))− F (x(·))‖
= sup

t06t6t1

‖F (x(·) + h(·))(t)− F (x(·))(t)‖ = sup
t06t6t1

‖f(t, x(t) + h(t))− f(t, x(t))‖

6 sup
t06t6t1

ω(f, Γrx(·), ‖h(·)‖) = ω(f, Γrx(·), ‖h(·)‖).

Skup Γrx(·) je kompaktan, a funkcija f je neprekidna na ǌemu. Zato je funkcija
f ravnomerno neprekidna na skupu Γrx(·). Ako h(·) te¼i 0, onda i ‖h(·)‖ te¼i 0,
pa samim tim i ω(f, Γrx(·), ‖h(·)‖) te¼i 0. Tim pre d(F (x(·)+h(·)), F (x(·))) te¼i
0, tj. F (x(·) + h(·)) te¼i F (x(·)). Dakle, operator Nemickog F je neprekidan u
proizvoǉnoj taqki x(·) skupa D. Zato je on neprekidan na skupu D.

c) Neka je x(·) ∈ D. Linearni operator A(x(·)) : Cn[t0, t1] → Cm[t0, t1], koji
se definixe sa

A(x(·))h(·)(t) = fx(t, x(t))h(t),

ograniqen je. Zaista,

‖A(x(·))‖ = sup
‖h(·)‖61

‖A(x(·))h(·)‖ = sup
‖h(·)‖61

sup
t06t6t1

‖A(x(·))h(·)(t)‖

= sup
‖h(·)‖61

sup
t06t6t1

‖fx(t, x(t))h(t)‖ = sup
t06t6t1

sup
‖h(·)‖61

‖fx(t, x(t))h(t)‖

6 sup
t06t6t1

sup
‖h(·)‖61

‖fx(t, x(t))‖‖h(t)‖ 6 sup
t06t6t1

‖fx(t, x(t))‖ < +∞.

Neka je r > 0, takvo da je Γrx(·) ⊆ G. Neka je h(·) ∈ Cn[t0, t1], ‖h(·)‖ 6 r. Kako
je Γ(x(·) + h(·)) ⊆ Γrx(·), imamo da je

‖F (x(·) + h(·))− F (x(·))−A(x(·))h(·)‖
= sup

t06t6t1

‖f(t, x(t) + h(t))− f(t, x(t))− fx(t, x(t))h(t)‖

6 sup
t06t6t1

sup
06θ61

‖fx(t, x(t) + θh(t))− fx(t, x(t))‖‖h(t)‖

6 sup
06θ61

sup
t06t6t1

‖fx(t, x(t) + θh(t))− fx(t, x(t))‖‖h(·)‖

6 sup
06θ61

ω(fx,Γrx(·), ‖h(·)‖)‖h(·)‖ = ω(fx, Γrx(·), ‖h(·)‖)‖h(·)‖.
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Kako ω(fx, Γrx(·), ‖h(·)‖) te¼i 0 kada h(·) te¼i 0, operator A(x(·)) je Frexeov
izvod operatora Nemickog F u taqki x(·). Neprekidnost operatora A(x(·)) po x(·)
dokazuje se na isti naqin na koji se dokazuje neprekidnost operatora Nemickog
u taqki b).

Na izraz x(t) najqex²e gledamo kao na funkciju jedne promenǉive, broja t.
Ponekad je korisno na ǌega gledati kao na funkciju dveju promenǉivih: funk-
cije x(·) i broja t. To preslikavaǌe nazivamo operator evaluacije. U slede²oj
teoremi navode se ǌegova svojstva.

Teorema 1.4. Operator evaluacije ev : C1
n[t0, t1] × (t0, t1) → Rn, koji se

definixe sa
ev(x(·), t) = x(t),

neprekidno je diferencijabilan i

evx(·)(x(·), t)h(·) = h(t),

evt(x(·), t) = ẋ(t).

Dokaz. Operator evaluacije ev je ograniqen linearni operator po x(·).
Zato je on jako diferencijabilan po x(·) i

evx(·)(x(·), t)h(·) = ev(h(·), t) = h(t).

Kako je

‖evx(·)(x(·), t)− evx(·)(x̄(·), t̄)‖
= sup
‖h(·)‖61

‖evx(·)(x(·), t)h(·)− evx(·)(x̄(·), t̄)h(·)‖ = sup
‖h(·)‖61

‖h(t)− h̄(t)‖

6 sup
‖h(·)‖61

sup
06θ61

‖ḣ((1− θ)t + θt̄)‖ | t− t̄ |6| t− t̄ |,

parcijalni izvod operatora evaluacije ev po promenǉivoj x(·) je neprekidan u
prizvoǉnoj taqki domena (t̄, x̄(·)). Zato je on neprekidan na celom svom domenu.

Jasno je da je operator evaluacije ev diferencijabilan po promenǉivoj t i
da je

evt(x(·), t) = ẋ(t).

Kako je

‖evt(x(·), t)− evt(x̄(·), t̄)‖ = ‖ẋ(t)− ˙̄x(t̄)‖
6 ‖ẋ(t)− ˙̄x(t)‖+ ‖ ˙̄x(t)− ˙̄x(t̄)‖ 6 ‖ẋ(·)− ˙̄x(·)‖+ ‖ ˙̄x(t)− ˙̄x(t̄)‖,

parcijalni izvod operatora evaluacije ev po promenǉivoj t je neprekidan u pri-
zvoǉnoj taqki domena (t̄, x̄(·)), pa je on neprekidan na celom svom domenu.
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2. Koxijeva funkcija obiqne diferencijalne jednaqine

Neka je G otvoren skup u R × Rn i neka je f(t, x) : G → Rn neprekidna
funkcija koja ima neprekidan parcijalni izvod po x. Neprekidno diferencija-
bilna funkcija x(·) : I → Rn, gde je I interval, jeste rexeǌe diferencijalne
jednaqine

ẋ(t) = f(t, x(t)), (1)

ako je (t, x(t)) ∈ G i ẋ(t) = f(t, x(t)), za svako t ∈ I. Qesto se razmatraju rexeǌa
diferencijalne jednaqine (1) koja zadovoǉavaju poqetni uslov

x(τ) = ξ, (2)

gde je (τ, ξ) ∈ G. Problem (1), (2) se naziva Koxijev problem. Slede²e dve
teoreme se mogu na²i u svim u­benicima obiqnih diferencijalnih jednaqina. U
teoremama se radi o egzistenciji i jedinosti rexeǌa Koxijevog problema.

Teorema 2.1. Neka je (τ, ξ) ∈ G. Postoji rexeǌe x(·) diferencijalne
jednaqine (1) koje zadovoǉava uslov (2).

Teorema 2.2. Neka su x(·), y(·) : I → Rn dva rexeǌa diferencijalne je-
dnaqine (1). Ako je x(τ) = y(τ) za neko τ ∈ I, onda je x(t) = y(t) za svako
t ∈ I.

Neka je (τ, ξ) ∈ G. Prema Teoremi 2.1, postoji bar jedno rexeǌe diferen-
cijalne jednaqine (1), koje zadovoǉava uslov x(τ) = ξ, a prema teoremi 2.2 takva
rexeǌa se mogu kombinovati. Pretpostavimo da je preslikavaǌe t 7→ x(t, τ, ξ)
kombinovana funkcija svih takvih rexeǌa i da je S(τ, ξ) ǌen domen. Oqigledno
je da je S(τ, ξ) otvoren interval i da je preslikavaǌe t 7→ x(t, τ, ξ) intervala
S(τ, ξ) u Rn rexeǌe naxe diferencijalne jednaqine. Stavimo da je

S = {(t, τ, ξ) ∈ R×G | t ∈ S(τ, ξ)}.
Funkcija x(t, τ, ξ) preslikava skup S u prostor Rn. Ona se naziva Koxijeva
funkcija diferencijalne jednaqine (1).

Teorema 2.3. Koxijeva funkcija x(t, τ, ξ) diferencijalne jednaqine (1)
ima slede�a svojstva:

a) xt(t, τ, ξ) = f(t, x(t, τ, ξ)), za svako (t, τ, ξ) ∈ S.

b) x(τ, τ, ξ) = ξ, za svako (τ, ξ) ∈ G.

c) Ako je τ ′ ∈ S(τ, ξ), gde je (τ, ξ) ∈ G, onda je

S(τ ′, x(τ ′, τ, ξ)) = S(τ, ξ), x(t, τ ′, x(τ ′, τ, ξ)) = x(t, τ, ξ).

Dokaz. Tvr±eǌa a) i b) su posledice qiǌenice da je Koxijeva funkcija
x(t, τ, ξ), za fiksirano τ i ξ, posmatrana kao funkcija jedne promenǉive t, rexeǌe
Koxijevog problema (1), (2).
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Neka je ξ′ = x(τ ′, τ, ξ), x(t) = x(t, τ, ξ), za t ∈ S(τ, ξ) i x′(t) = x(t, τ ′, ξ′),
za t ∈ S(τ ′, ξ′). Funkcija x(t) je rexeǌe diferencijalne jednaqine (1) koje za-
dovoǉava poqetni uslov x(τ ′) = ξ′. Zato je S(τ ′, ξ′) ⊇ S(τ, ξ) i x′(t) = x(t) za
t ∈ S(τ, ξ). Funkcija x′(t) je rexeǌe diferencijalne jednaqine (1) koje zado-
voǉava poqetni uslov x′(τ) = x(τ) = ξ. Zato je S(τ ′, ξ′) ⊆ S(τ, ξ). Time je dokaz
tvr±eǌa c) kompletiran.

Teorema 2.4. Skup S je otvoren podskup od R × R × Rn, a Koxijeva
funkcija x(t, τ, ξ) je neprekidno diferencijabilna na ǌemu.

Dokaz. Neka je (t̄, τ̄ , ξ̄) ∈ S. Dokaza²emo da skup S zajedno sa ovom taq-
kom sadr¼i i neku ǌenu okolinu i da je Koxijeva funkcija x(t, τ, ξ) neprekidno
diferencijabilna na toj okolini.

Kako je S(τ̄ , ξ̄) otvoren interval, koji sadr¼i taqke t̄ i τ̄ , to postoji zatvoren
interval [t0, t1] ⊆ S(τ̄ , ξ̄)), takav da t̄, τ̄ ∈ (t0, t1). Sa

F (τ, ξ, x(·)) = (ẋ(t)− f(t, x(t)), x(τ)− ξ),

definixemo operator

F (τ, ξ, x(·)) : G×D → Cn[t0, t1]×Rn,

gde je
D = {x(·) ∈ C1

n[t0, t1] | (∀t ∈ [t0, t1])(t, x(t)) ∈ G }.
Na osnovu teorema 1.2 i 1.3 mo¼emo zakǉuqiti da je operator F neprekidno
diferencijabilan.

Izvod po x(·) operatora F u taqki (τ̄ , ξ̄, x̄(·)) dat je slede²om formulom

Fx(·)(τ̄ , ξ̄, x̄(·))h(·) = (ḣ(t)− fx(t, x̄(t))h(t), h(τ̄)).

Ovaj ograniqeni linearni operator preslikava prostor C1
n[t0, t1] u prostor

Cn[t0, t1] × Rn. Dokaza²emo da je on bijekcija i samim tim, prema teoremi o
otvorenom preslikavaǌu, da je izomorfizam. Neka je (y(·), η) ∈ Cn[t0, t1] × Rn.
Dovoǉno je da doka¼emo da postoji jedinstveno h(·) ∈ C1

n[t0, t1], koje zadovoǉava
jednakost

Fx(·)(τ̄ , ξ̄, x̄(·))h(·) = (y(·), η).

Posledǌa jednaqina je ekvivalentna sa slede²im sistemom

ḣ(t)− fx(t, x̄(t))h(t) = y(t), za svako t ∈ [t0, t1],

h(τ̄) = η.

Ovo je Koxijev problem sa linearnom diferencijalnom jednaqinom. Prema po-
znatoj teoremi iz klasiqnih kurseva diferencijalnih jednaqina, taj problem ima
jedinstveno rexeǌe.

Prema klasiqnoj teoremi o implicitnoj funkciji, postoje δ > 0 i neprekidno
diferencijabilna funkcija x(τ, ξ) : B(τ̄ , δ)×B(ξ̄, δ) → C1

n[t0, t1], takvi da je

F (τ, ξ, x(τ, ξ)) = 0, za svako (τ, ξ) ∈ B(τ̄ , δ)×B(ξ̄, δ).
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Imaju²i u vidu kako je definisan operator F , posledǌu jednakost mo¼emo da
svedemo na

ẋ(τ, ξ)(t)− f(t, x(τ, ξ)(t)) = 0, za svako t ∈ [t0, t1],

x(τ, ξ)(τ)− ξ = 0,

za svako (τ, ξ) ∈ B(τ̄ , δ) × B(ξ̄, δ). Dakle, x(τ, ξ) je rexeǌe Koxijevog problema
(1), (2). Zato je

x(τ, ξ)(t) = x(t, τ, ξ), za svako (t, τ, ξ) ∈ [t0, t1]×B(τ̄ , δ)×B(ξ̄, δ).

Odavde dobijamo da je otvoreni skup (t0, t1) × B(τ̄ , δ) × B(ξ̄, δ) sadr¼an u S i
da je Koxijeva funkcija x(t, τ, ξ) = ev(x(τ, ξ), t) neprekidno diferencijabilna na
tom skupu.

Ostaje da se na±u parcijalni izvodi Koxijeve funkcije x(t, τ, ξ) po sve tri
ǌene promenǉive. U narednom qlanku bi²e izlo¼eno kako se to radi.
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OBAVEXTEǋA

ME�UNARODNA TAKMIQEǋA UQENIKA OSNOVNIH XKOLA

Juniorska balkanska matematiqka olimpijada

Ovogodixǌa Juniorska balkanska matematiqka olimpijada (JBMO) odr¼ana
je od 25. do 30. juna u Sarajevu (BiH), a uqestvovale su ekipe 11 balkanskih
zemaǉa. Ekipa Srbije bila je u sastavu:

1. Duxan Xobot, gimnazija ,,J. J. Zmaj“, Novi Sad,
2. Bojan Roxko, OX ,,D. Maksimovi²“, Zajeqar,
3. Lazar Mojsilovi�, OX ,,M. Kuxi²“, Ivaǌica,
4. Stefan Spalevi�, OX pri Prvoj kragujevaqkoj gimnaziji, Kragujevac
5. Duxan Drobǌak, OX ,,A. Milosavǉevi²“, Beograd,
6. Sr�an Stefanovi�, OX ,,N. Velimirovi²“, Xabac.

Rukovodioci ekipe bili su �or�e Barali�, Matematiqki inistitut SANU
i Slavoǉub Milosavǉevi�, OX ,,Qegar“.

Naxi takmiqari osvojili su jednu zlatnu medaǉu (Duxan Xobot), jednu
srebrnu (Lazar Mojsilovi�) i tri bronzane medaǉe (Bojan Roxko, Stefan
Spalevi�, Sr�an Stefanovi�). Ekipno smo zauzeli qetvrto mesto.


