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NEKE NOVE NEJEDNAKOSTI IZME�U
BROJEVNIH SREDINA

Dokazivaǌe nejednakosti je veoma interesantno podruqje matematike. Neje-
dnakosti izme±u brojevnih sredina tu zauzimaju posebno mjesto. Najprije defi-
niximo qetiri poznate brojevne nejednakosti za dva pozitivna broja a i b:

A =
a + b

2
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√
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√
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2
(kvadratna sredina).

Lako se dokazuje da va¼i nejednakost H 6 G 6 A 6 K, tj.

(1)
2

1
a

+
1
b

6
√

ab 6 a + b

2
6

√
a2 + b2

2
.

Jednakost u (1) va¼i samo u sluqaju kada je a = b. O nejednakosti (1) je pisano
puno u raznim kǌigama i qasopisima iz matematike, gdje su dati razni dokazi
(algebarski i geometrijski) ove nejednakosti.

Sada ²emo dokazati da va¼i jedna veoma interesantna nejednakost koja se
odnosi na brojevne sredine, a koja glasi

A + G 6 K + H, tj.
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Dokaz. Oqigledno, data nejednakost (2) ekvivalentna je, redom, sǉede²im
nejednakostima:

a + b

2
− 2

1
a

+
1
b

6
√

a2 + b2

2
−
√

ab



12 X. Arslanagi²
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> 0,

xto je oqigledno taqno. Jednakost u (2) va¼i ako i smao ako je a = b.
Sada se opravdano name²e pitaǌe da li va¼i nejednakost A + G 6 K + H

za tri pozitivna broja a, b i c, tj.
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Oqigledno, jednakost u (3) va¼i u sluqaju kada je a = b = c, jer je tada A =
G = K = H. Ako bismo ovu nejednakost (3) pokuxali da doka¼emo na sliqan
naqin kao xto smo dokazali nejednakost (2), priliqno bismo se namuqili. Xta
uraditi? Pokuxa²emo sa konkretnim vrijednostima – uzmimo da je npr. a = 1,
b = 2 i c = 3. Dobijamo:
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√
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√
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√
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Sada dobijamo

(4) A + G = 2 + 3
√

6 >
19
5

.

Zaista, posǉedǌa nejednakost je, redom, ekvivalentna sa:

3
√

6 >
9
5
, 6 >
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, 750 > 720,

xto je taqno. Me±utim,

(5) K + H =

√
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3
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<
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.

Naime, posǉedǌa nejednakost je, redom, ekvivalentna sa:
√

14
3

<
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55

,
14
3

<
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552
, 14 · 552 < 3 · 1192, 42350 < 42843,

xto je taqno. Iz (4) i (5) slijedi da je, u ovom sluqaju,

A + G > K + H,

tj. va¼i suprotna nejednakost nejednakosti (3). Dakle, nejednakost (3) u opxtem
sluqaju nije taqna.

Odavde zakǉuqujuemo da nema smisla govoriti o generalizaciji nejednakosti
(2) za sluqaj brojevnih sredina A, G, K i H n pozitivnih brojeva a1, a2, . . . , an.

Dokaza²emo sada da za dva pozitivna broja va¼i nejednakost

(6) H ·K 6 A ·G,

odnosno

(7)
2

1
a

+
1
b

√
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Nejednakost (7) je redom ekvivalentna slede²im:

4ab

a + b
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2
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√
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16a2b2 · a2 + b2

2
6 (a + b)4 · ab

8a2b2(a2 + b2) 6 ab(a4 + 4a3b + 6a2b2 + 4ab3 + b4)

a4 − 4a3b + 6a2b2 − 4ab3 + b4 > 0

(a− b)4 > 0,

xto je taqno, pa va¼i i nejednakost (7), dok jednakost va¼i za a = b.
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Razmotrimo sada nejednakost (6) kada su H, G, A i K harmonijska, geome-
trijska, aritmetiqka i kvadratna sredina tri pozitivna broja a, b i c, dakle
nejednakost
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Nejednakost (8) je redom ekvivalentna sa

3abc

ab + bc + ca

√
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a2 + b2 + c2 6 (a + b + c)(ab + bc + ca).

Za a = 1, b = 2 i c = 3 prethodna nejednakost postaje

3
√

3 3
√

36
√

14 6 6 · 11,

xto je redom ekvivalentno sa
√

42 3
√

36 6 22, 423 · 362 6 226, 1 500 282 6 1 771 561.

Dakle, nejednakost (8) je taqna za a = 1, b = 2 i c = 3.
Ostaje otvoreno pitaǌe da li nejednakost (8) va¼i za bilo koje a, b, c > 0,

te da li ima osnova tvrditi da va¼i generalizacija nejednakosti (7).
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1. Š. Arslanagić, Matematika za nadarene, Bosanska riječ, Sarajevo, 2005.
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