
NASTAVA RAQUNARSTVA

Stanka Matkovi�, Mijodrag �urixi�

MALA XKOLA OBJEKTNO ORIJENTISANOG
PROGRAMIRAǋA U PROGRAMSKOM JEZIKU C#

Prvi deo

Klasa, atributi i metodi

Osnovni pojam u objektno orijentisanom programiraǌu je klasa. Klasa
predstavǉa uopxteǌe objekata koji imaju zajedniqke osobine i funkcionalno-
sti. Osobine opisujemo atributima a funkcionalnosti metodima.

Posmatrajmo nastavni proces u xkoli. Recimo da u uqionici 1 uqenik IVa,
Pera, radi zadatak iz matematike po zahtevu profesora Laze, a u uqionici 2
profesor Mika predaje svim uqenicima odeǉeǌa IVb novu lekciju iz fizike.
Sasvim je mogu²e da sutradan uloge profesora budu promeǌene, pa da profesor
Mika u IVa ispituje ili predaje novu lekciju iz fizike, a profesor Laza u IVb
predaje novu lekciju iz matematike.

Ve² u ovom uprox²enom prikazu nastavnog procesa mo¼emo uoqiti osnovne
objekte koji uqestvuju u ǌemu (Pera, Mika, Laza, IVa, IVb, matematika, fizika,
uqionica 1, . . .). Lako se mo¼e uoqiti da Mika i Laza koordiniraju nastavni
proces tako xto upoznaju uqenike sa novim gradivom, vrxe proveru znaǌa uqe-
nika, oceǌuju ga, itd. Oni imaju i zajedniqke osobine (ime, struqna sprema,
predmet koji predaju, godine sta¼a). Samim tim oni pripadaju jednoj od klasa
uqesnika u nastavnom procesu, klasi Profesor. Na sliqan naqin mo¼emo uoqiti
i klase Ucenik (Pera), Predmet (matematika, fizika), Odeljenje (IVa, IVb), . . .

Do klasa dolazimo polaze²i od pojedinaqnih objekata. Posmatraǌem svih
uqenika uoqavamo ǌihove zajedniqke osobine. Na primer, za sve uqenike je potre-
bno pratiti ime, prezime, datum ro±eǌa, razred, odeǉeǌe. Te osobine nazivamo
atributima. Tako±e, svim uqenicima mo¼emo pridru¼iti iste ,,akcije“: uqe-
nik odgovara i dobija ocenu, uqenik meǌa odeǉeǌe . . . Te akcije u okviru klase
nazivamo metodima klase, i ǌima se opisuje funkcionalnost objekata te klase.

Klasu definixemo navo±eǌem rezervisane reqi class iza koje sledi iden-
tifikator klase (ime klase). Posle imena, ako formiramo klasu koja nasle±uje
neku, prethodno definisanu klasu, u zaglavǉu navodimo ‘:’ pa ime klase iz ko-
je je izvedena. Zatim navodimo telo klase u kome u vitiqastim zagradama {}
definixemo qlanove klase (atributi i metodi).

Mala xkola objektno orijentisanog programiraǌa 27

class <imeKlase> :<imePrethodnoDefinisaneKlase>

{
opis / definicija članova klase

}

Na primer, klasu uqenika mo¼emo intuitivno definisati na slede²i naqin:

class Ucenik

{
string ime, prezime;

DateTime datumRodjenja;

int razred;

int SkolskaGodina;

char odeljenje;

Ocena [] ocene;

double prosek()

{
. . .

}
double prosek(Predmet P)

{
. . .

}
void uci(Lekcija X)

{
. . .

}
}

Da bismo napravili objekat, upotrebǉavamo izraz oblika

<ime objekta> =new <ime klase> () .

Korix²eǌem operatora new odvaja se u dinamiqkoj memoriji prostor za
registrovaǌe objekta klase <ime klase>. Ovaj operator vra²a adresu dodeǉenog
prostora koju mo¼emo dodeliti imenu objekta:

Ucenik x=new Ucenik();

Atributima opisujemo odre±enu osobinu objekta (ime, prezime, datum ro±e-
ǌa, razred, odeǉeǌe). Najqex²e, razliqiti objekti iste klase imaju razliqite
vrednosti atributa. Vrednosti atributa definixu staǌe objekta. Pri opisu
atributa moramo navesti tip kome taj atribut pripada (celobrojni, realni, zna-
kovni, . . .) i ime atributa. Pristup atributima objekta neke klase realizujemo
na slede²i naqin:

imeObjekta.imeAtributa

28 S. Matkovi², M. §urixi²

Na primer, ako je x objekat klase Ucenik, atributu ime pristupamo na-
vo±eǌem x.ime.

Metodom opisujemo ponaxaǌe objekta u odre±enoj situaciji i pod odre±enim
uslovima (uci), ali i odre±ujemo nove vrednosti na osnovu osobina koje objekat
poseduje (prosek). Na taj naqin opisujemo funkcionalnost objekta.

Metod klase je imenovani blok naredbi koji se sastoji iz zaglavǉa i tela
metoda. U zaglavǉu navodimo povratni tip (ako metod ne proizvodi vrednost koju
vra²a, navodimo rezervisanu req void), zatim ime metoda za kojim sledi u malim
zagradama spisak parametara metoda. Za svaki parametar navodi se tip kome taj
parametar pripada kao i ime parametra. Posle zaglavǉa u vitiqastim zagradama
navodimo telo metoda koje se sastoji iz odgovaraju²ih iskaza programskog jezika
C#.

<povratni tip> <ime metoda>(<lista parametara>)

{ <telo metoda> }

Poziv metoda objekta u programskom jeziku C# realizujemo na slede²i na-
qin:

imeObjekta.imeMetoda(lista stvarnih parametara)

Na primer, ako je x objekat klase Ucenik, metod prosek pozivamo sa
x.prosek(), a metod uci, x.uci(L) gde je L objekat klase Lekcija.

Ukoliko u telu metoda koristimo neki od atributa ili pozivamo neki drugi
metod te klase, ne navodimo ime objekta ve² samo ime atributa, odnosno meto-
de. Umesto imena objekta mo¼emo navesti slu¼benu req this. Objekat kome se
obra²amo preko this je teku²i objekat.

Razliqiti metodi u jednoj klasi mogu imati isti naziv ali se moraju raz-
likovati po broju ili tipu parametara. Pisaǌe metoda istog imena a razliqi-
tih parametara naziva se preklapaǌe (overloading), preoptere²ivaǌe metoda.
U klasi Ucenik metod prosek smo preopteretili: za uqenika mo¼emo raqunati
prosek svih zakǉuqenih ocena (prosek()), a mo¼emo i prosek svih ǌegovih ocena
iz datog predmeta (prosek(Predmet P)).

Svojstva

Jedna od najznaqajnih karakteristika objektno orijentisanog programiraǌa
je enkapsulacija (zatvorenost, uqaureǌe) objekata. Pod enkapsulacijom objek-
ta podrazumevamo kontrolisan pristup elementima objekta. Nekim elementima
objekta mogu pristupiti svi koji taj objekat na bilo koji naqin koriste. Te ele-
mente nazivamo javnim (public) i oni qine deo preko koga objekat komunicira
sa drugim objektima. Nasuprot ǌima postoji deo objekta koji ne koristimo di-
rektno u komunikaciji sa drugim objektima, da ne bi bio izlo¼en neovlax²enom
pristupu ili promeni. Za takve elemente ka¼emo da su privatni (private).

Vrlo qesto postoji potreba da se atributi zaxtite od neovlax²enog pri-
stupa ili promene pa su oni uglavnom privatni qlanovi klase, dok su metode u
ve²ini sluqajeva javne.

Mala xkola objektno orijentisanog programiraǌa 29

Posmatrajmo klasu Vreme kojom ²emo opisivati trajaǌe odre±enih proce-
sa. Vreme mo¼emo definisati uz pomo² razliqitih atributa na primer satima,
minutama i sekundama, ili danima, satima, minutama i sekundama i sliqno. Da
bismo xto efektnije prikazali razliqite elemente klase, vreme ²emo u primeru
koji sledi definisati samo jednim atributom koji predstavǉa broj sekundi.

public class Vreme

{
long sekunde; // ili Int64 sekunde;

public long VratiSate() // broj sati sadrzanih u vremenu

{
return sekunde / 3600;

}
public long VratiMinute() // broj minuta sadrzanih u vremenu

{
return sekunde/60;

}
public long VratiSekunde()

{
return sekunde ;

}
}

Metodi VratiSate() i VratiMinute() raqunaju odre±ene informacije pa je
razlog ǌihovog postojaǌa intuitivno jasan. Postavǉa se pitaǌe zaxto postoji
metoda VratiSekunde() kada broj sekundi sadr¼anih u vremenu opisuje atribut
sekunde. Atribut sekunde je privatni qlan klase pa ne mo¼emo saznati ǌegovu
vrednost van ǌe. Zato uvodimo javni metod VratiSekunde() koji ²e nam omo-
gu²iti pristup toj informaciji. Ovim metodom dobijamo informaciju o broju
sekundi ali je i daǉe ne mo¼emo promeniti (read-only).

Radi lakxeg pristupa privatnim atributima klase u programskom jeziku
C# mo¼emo kreirati svojstva (property) i ona po potrebi mogu imati slede²e
komponente:
• get, koja na osnovu vrednosti atributa odre±uje i vra²a neku karakteri-

stiku objekta (korix²eǌem naredbe return)
• set, koja na osnovu zadate vrednosti (value) raquna i postavǉa vrednosti

atributa.
Svojstvo definixemo na slede²i naqin:

public <povratni tip svojstva> <ime svojstva>

{
get { <telo get komponente> }
set {<telo set komponente> }

}

Svojstva nisu ni atributi ni metode iako imaju karakteristike i atributa
i metoda. Kao i atributi svojstva nemaju parametre, a u ǌihovim komponentama,

30 S. Matkovi², M. §urixi²

kao i u metodama, mo¼e se navesti proizvoǉan niz naredbi programskog jezika
C#. U get komponenti obavezno je navo±eǌe naredbe return kojom se vra²a
izraqunata vrednost.

Svojstva se pozivaju navo±eǌem imena objekta za kojim sledi ime svojstva
odvojeno taqkom. Ako se u izrazu poziv svojstva nalazi sa leve strane operatora
dodele, izvrxava se set komponenta svojstva, a u suprotnom izvrxava se get
komponenta.

U klasi Vreme mo¼emo definisati svojstvo Sekunde na slede²i naqin:

public long Sekunde

{
get { return sekunde; }
set { sekunde = value; }

}

Komponenta get ovog svojstva ima ekvivalentno dejstvo kao i metoda Vrati-
Sekunde(), a set komponenta nam omogu²ava da postavǉamo vrednosti privatnom
atributu sekunde. Ovako definisanim svojstvom naruxavamo enkapsulaciju jer
je atribut sekunde postao potpuno dostupan. Samim tim mogli smo definisati
atribut kao javan. U ve²ini sluqajeva potrebno je da van klase mo¼emo proqi-
tati vrednost atributa a da ga ne mo¼emo meǌati. Tada koristimo svojstvo kod
kojeg nije definisana set komponenta (read only svojstvo, samo za qitaǌe).

public long Sekunde

{
get { return sekunde; }

}

Ukoliko je vrednost atributa ograniqenog opsega, u set komponenti mo¼emo
izvrxiti kontrolu vrednosti koju postavǉamo. Na primer, ako klasu Vreme opi-
sujemo atributima sat, minut i sekund, mo¼emo proveravati da li je vrednost
koju postavǉamo za atribute minut i sekund u dozvoǉenim granicama (od 0 do
59).

Vrlo qesto postoje karakteristike objekta koje zavise i mogu se izraqunati
na osnovu vrednosti atributa. Mo¼emo definisati svojstva kojima odre±ujemo
vrednost tih karakteristika.

Primetimo da objekte klase Vreme mo¼emo opisati i pomo²u tri cela broja
koji predstavǉaju broj sati, minuta (minut<60) i sekundi (sekund<60). Defi-
niximo svojstva Sat, Minut i Sekund koja zadovoǉavaju jednakost:

Sat*3600+Minut*60+Sekund=sekunde.

public long Sekund

{
get { return sekunde%60; }

}
public long Minut

Mala xkola objektno orijentisanog programiraǌa 31

{
get { return (sekunde / 60) % 60; }

}
public long Sat

{
get { return sekunde / 3600; }

}

Ova svojstva nam omogu²avaju da proqitamo vrednosti Sat, Minut i Sekund.
Bilo bi prirodno da mo¼emo i postaviti ǌihovu vrednost. Promena vrednosti
svake od ovih karakteristika povlaqi i promenu atributa sekunde, pa mo¼emo
realizovati i odgovaraju²e set komponente.

public long Sekund

{
get { return sekunde%60; }
set { sekunde = sekunde-Sekund+value; }

}
public long Minut

{
get { return (sekunde / 60) % 60; }
set { sekunde = sekunde-Minut*60+value*60; }

}
public long Sat

{
get { return sekunde / 3600; }
set { sekunde = sekunde - Sat * 3600 + value * 3600; ; }

}

Indekseri

U programskom jeziku C# mo¼emo imati qlanove klase koje zovemo indekse-
rima, koji imaju sliqnosti sa svojstvima ali i svojih specifiqnosti.

Indekser nam omogu²ava da pojedinim karakteristikama objekata klase pri-
stupamo na efikasan naqin, navo±eǌem imena objekta i u uglastim zagradama
indeksa koji nas upu²uje na odgovaraju²u karakteristiku. Kao i svojstva, in-
dekseri imaju get i set komponentu u kojima se u zavisnosti od vrednosti in-
deksa odre±uje karakteristika objekta, odnosno postavǉaju vrednosti atributa.
Za razliku od svojstava indekser ima najmaǌe jedan parametar a mo¼e imati i
vixe parametara, pa objekat dobija vixe dimenzija. Indekser definixemo na
slede²i naqin:

public <povratni tip indeksera> this[<tip indeksa > <ime indeksa>, ...]

{
get { <telo get komponente> }
set {<telo set komponente> }

}

32 S. Matkovi², M. §urixi²

Indekseru programer ne zadaje ime jer on uvek koristi ime this. Sliqno
metodama, indekseri mogu imati preklopǉene verzije, koje se moraju razlikovati
po broju ili po tipu indeksa.

Klasu Vreme mo¼emo proxiriti indekserom koji, u zavisnosti od indeksa,
vra²a Sat, Minut ili Sekund. Za indeks mo¼emo izabrati: prethodno defini-
sani nabrojivi tip (enum) qije su mogu²e vrednosti sat, minut i sekund, ili
tip char tako da za vrednosti indeksa redom ‘h’, ‘m’ i ‘s’ vra²a Sat, Minut i
Sekund, ili tip string. U navedenoj realizaciji indeksera koristimo pretho-
dno definisana svojstva. Ovaj indekser mogli smo realizovati i bez korix²eǌa
tih svojstava i u tom sluqaju on bi mogao i zameniti ta svojstva. Na sliqan
naqin kako je realizovana set komponenta svojstava Sat, Minut i Sekund mo¼emo
realizovati set komponentu za svaki od navedenih indeksera.

public enum JedinicaVremena

{
sat,

minut,

sekund

};
public long this[JedinicaVremena j]

{
get

{
if (j == JedinicaVremena.sat)

return Sat; // return sekunde / 3600;

if (j == JedinicaVremena.minut)

return Minut; // return (sekunde / 60) % 60

return Sekund;

}
}

public long this[char ch]

{
get

{
if (ch == ’h’)

return Sat;

if (ch == ’m’)

return Minut;

if (ch == ’s’)

return Sekund;

return sekunde;

}
}

Ako je A objekat klase Vreme vrednost izraza A[JedinicaVremena.sat] i
A[‘h’] je broj sati sadr¼anih u vremenu A.

Mala xkola objektno orijentisanog programiraǌa 33

Konstruktori

U C#-u pri deklaraciji neke instance klase, objekta, rezervixe se prostor
za adresu objekta (referencu) a sam objekat se kreira korix²eǌem operatora
new.

<ime klase> <ime objekta> = new <ime klase>(<lista parametara>) ;

Operator new vra²a adresu novog objekta koja se dodeǉuje imenu objekta.
Konstruktor je metod koji se poziva pri kreiraǌu objekta. Konstruktori su

sastavni deo svake klase i nose ǌeno ime. Pozivom konstruktora objekat poqiǌe
svoj ¼ivot. Klasa mo¼e imati vixe konstruktora koji se razlikuju po listi pa-
rametara. Lista parametara najqex²e sadr¼i vrednosti kojima inicijalizujemo
atribute objekta, a mo¼e biti i prazna.

Ako pogramer ne napixe ni jedan konstruktor programski prevodilac ²e
napraviti podrazumevani konstruktor (konstruktor bez parametara, numeriqkim
tipovima dodeǉuje 0, logiqkim atributima dodeǉuje vrednost false, referentne
atribute postavǉa na null).

Ako pixemo vixe konstruktora, kako svi imaju ime klase, moraju se razli-
kovati po listi parametara, tj. po broju ili tipu parametara.

Za klasu Vreme, definisanu u prethodnom delu qlanka, mo¼emo definisati
slede²e konstruktore:
• Konstruktor bez parametara koji postavǉa atribut sekunde na 0

public Vreme()

{
sekunde = 0;

}
• Konstruktor koji za parametar ima inicijalni broj sekundi

public Vreme(long x)

{
sekunde = x;

}
• Konstruktor koji za parametar ima broj sati i broj minuta

public Vreme(long h, long m)

{
sekunde = 3600*h+60*m;

}
• Konstruktor koji za parametar ima broj sati, minuta i sekundi

public Vreme(long h, long m, long s)

{
sekunde = 3600 * h + 60 * m + s;

}
• Konstruktor koji za parametar ima string oblika ‘‘sati:minuti:sekunde’’

(ukoliko se ovom konstruktoru prosledi drugaqiji format stringa on atri-
but sekunde postavǉa na 0)

34 S. Matkovi², M. §urixi²

public Vreme(string s)

{
try

{
long h = Convert.ToInt64(s.Substring(0, s.IndexOf(’:’)));

long m = Convert.ToInt64(s.Substring(s.IndexOf(’:’) + 1,

s.LastIndexOf(’:’) - s.IndexOf(’:’) - 1));

long sek = Convert.ToInt64(s.Substring(s.LastIndexOf(’:’)+1));

sekunde = 3600 * h + 60 * m + sek;

}
catch

{
sekunde = 0;

}
}

• Takozvani konstruktor kopije koji za parametar ima drugi objekat klase
Vreme, v, sekunde postavǉa na vrednost istog atributa parametra v.
public Vreme(Vreme v)

{
sekunde = v.sekunde;

}

Zakǉuqak

Ovo je prvi u nizu qlanaka koji planiramo, kojima ²emo pokuxati da pro-
fesorima informatike pribli¼imo objektno orijentisano programiraǌe i jedan
savremeni programski jezik koji se, po naxim dosadaxǌim iskustvima, vrlo us-
pexno mo¼e upotrebiti u nastavi, u svim fazama uqeǌa programiraǌa.

U ovom qlanku smo vas upoznali sa osnovnim elementima klase a planirano
je da u naredna dva obradimo operatore i nasle±ivaǌe.

Predla¼emo qitaocima da sliqno naxem primeru klase Vreme realizuju i
slede²e klase:

• TackaDekart koja predstavǉa taqku u Dekartovom koordinatnom sistemu za
koju mo¼ete definisati svojstva RastojanjeOdCentra, Kvadrant

• Krug, zadat sa dve dijametralno suprotne taqke, sa svojstvima Centar i
Poluprecnik

• Vektor, zadat jednom taqkom u ravni, sa svojstvima Intezitet, FazniUgao

Za sve tri klase mogu²e je realizovati i raznovrsne konstruktore, kao i
indeksere.

Za kraj, evo i jednog segmenta koda pokazne aplikacije u kome se mo¼e uo-
qiti ispravan naqin pozivaǌa svakog od elemenata klase koju smo kroz qlanak
obradili:

Mala xkola objektno orijentisanog programiraǌa 35

//kreiranje objekta uz poziv podrazumevanog konstruktora

Vreme T = new Vreme();

//koriscenje set komponente svojstava Sat, Minut, Sekund

T.Sat = 12;

T.Minut = 70;

T.Sekund = 0;

//koriscenje get komponente indeksera sa enum indeksom

Text=T[JedinicaVremena.sat]+" "+T[JedinicaVremena.minut];

//kreiranje objekta uz poziv konstruktora sa parametrom tipa string

T = new Vreme("12:46:30");

//koriscenje get komponente svojstava Sat, Minut, Sekund

label1.Text = T.Sat + " " + T.Minut + " " + T.Sekund;

//kreiranje objekta uz poziv konstruktora sa parametrom tipa string

T = new Vreme("1:20:4");

//koriscenje get komponente indeksera sa char indeksom

label1.Text += " " + T[’h’] + " " + T[’m’] + " " + T[’s’];

Matematiqka gimnazija, Kraǉice Natalije 37, Beograd

