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GEOMETRIJSKA MESTA TAQAKA U PROSTORU

Po I. F. Xariginu, geometrija je mo²no sredstvo u razvitku liqnosti u
najxirem pogledu. Ona razvija osobine liqnosti (stvaralaqki razvoj, moral-
no vaspitaǌe, nezavisnost u mixǉeǌu, sudovima, ponaxaǌu). Geometrija kao
predmet nudi mnogo raznovrsnih sadr¼aja o kojima pojedinci mogu kritiqki
razmixǉati i o kojima mogu donositi zakǉuqke oslobo±eni uticaja sopstvenih
ose²aǌa. Samim tim nastava geometrije iznedrava i svoj najznaqajniji ciǉ –
razvijaǌe samostalnog, jasnog i bri¼ǉivog logiqkog mixǉeǌa uqenika, koji je
ujedno i najbitniji ciǉ nastave matematike.

Konstruktivni zadatak u ravni se rexava pomo²u leǌira i xestara. U
principu, geometrijske konstrukcije u prostoru efektivno ne izvodimo, ve² ana-
liziramo i opisujemo. U ovom radu obradi²emo grupu zadataka vezanih za od-
re±ivaǌe geometrijskih mesta taqaka (GMT) u prostoru.

Zadatak 1. Odrediti GM sredixta du�i, paralelnih datoj ravni i
qiji krajevi le�e na dvema datim mimoilaznim pravim.

Rexeǌe. Neka date prave l1 i l2 seku datu ravan π u taqkama P i Q (ako l1 ‖ π
ili l2 ‖ π, onda nema tra¼enih du¼i). Po-
vucimo kroz sredixte M du¼i PQ prave l′1
i l′2, paralelne pravim l1 i l2, respektivno
(sl. 1). Uoqimo ravan ϕ paralelnu ravni
π, i neka ona seqe prave l1 i l2 u taqka-
ma A1 i A2, a prave l′1 i l′2 u taqkama M1

i M ′
1. Kako su qetvorouglovi M1A1PM i

M ′
1A2QM parelelogrami, sledi da je qe-

tvorougao M1A1M
′
1A2 paralelogram. Pre-

ma tome, sredixte du¼i A1A2 poklapa se sa
sredixtem du¼i M1M

′
1, tako da se rexeǌe

problema za date mimoilazne prave l1 i l2
poklapa sa rexeǌem istog problema za pra-
ve l′1 i l′2 koje se seku.

Sl. 1

Neka je S1 sredixte du¼i M1M
′
1, S2 sredixte du¼i M2M

′
2, S3 sredixte

du¼i M3M
′
3, . . . , gde su taqke Mi, M ′

i (i ∈ N) taqke preseka ravni, paralelnih
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ravni π, sa pravim l′1 i l′2. Neka je prava p
odre±ena taqkama M i S1 (sl. 2). Iz osobi-
na sliqnosti trouglova sledi da taqke S2, S3,
S4, . . . pripadaju pravoj p koja predstavǉa
tra¼eno geometrijsko mesto taqaka. Obratno,
lako se vidi da svaka taqka prave p predstavǉa
sredixte du¼i koja je paralelna datoj ravni a
qiji krajevi le¼e na dvema datim mimoilaznim
pravim.

Zadatak 2. Odrediti GM taqaka koje
u datom odnosu x : y dele du�i, paralelne
datoj ravni i qiji krajevi le�e na dvema
datim mimoilaznim pravim.

Sl. 2

Rexeǌe. Neka date prave l1 i l2 seku datu ravan π u taqkama P i Q (ako l1 ‖ π
ili l2 ‖ π, onda nema tra¼enih du¼i). Povucimo kroz taqku M , koja deli du¼ PQ
u odnosu x : y, prave l′1 i l′2 paralelne pravim l1 i l2, respektivno. Uoqimo ravan
paralelnu ravni π, i neka ona seqe prave l1 i l2 u taqkama A1 i A2, a prave l′1 i l′2 u
taqkama M1 i M ′

1. Kako su qetvorouglovi M1A1PM i M ′
1A2QM paralelogrami,

sledi da je qetvorougao M1A1M
′
1A2 trapez, pri qemu je M1A1 : M ′

1A2 = x : y.
Neka je taqka S1 presek dijagonala posmatranog trapeza. Kako su trouglovi
M1A1S1 i M ′

1A2S1 sliqni, onda je S1A1 : S2A2 = x : y = M1S1 : M ′
1S1. Na taj

naqin smo rexavaǌe problema za date mimoilazne prave l1 i l2 sveli na rexavaǌe
istog problema za prave l′1 i l′2 koje se seku. Tra¼eno geometrijsko mesto taqaka
je prava odre±ena taqkama M i S1.

Zadatak 3. Date su tri prave od ko-
jih su svake dve mimoilazne. Odrediti GM
te�ixta trouglova, paralelnih datoj rav-
ni i qija temena pripadaju datim pravim.

Rexeǌe. GM sredixta stranica AB posma-
tranih trouglova je prava l (videti zadatak 1).
Tra¼eno GMT qine taqke koje dele du¼i u od-
nosu 1 : 2, koje su paralelne datoj ravni i qiji
krajevi pripadaju pravoj l i tre²oj datoj pravoj
(sl. 3). Na osnovu zadatka 2 je tra¼eno GMT ta-
ko±e prava.

Sl. 3

Zadatak 4. U prostoru su date dve mimoilazne prave i taqka A na
jednoj od ǌih. Kroz date prave postavǉene su dve normalne ravni, obrazuju�i
prav diedar. Odrediti GM projekcija taqke A na strane takvih diedara.

Rexeǌe. Neka su π1 i π2 normalne ravni koje sadr¼e prave l1 i l2. Neka je l
prava ǌihovog preseka, X projekcija taqke A na pravu l koja pripada pravoj l1.
Postavimo kroz taqku A ravan π normalnu na pravu l2 (sl. 4). Kako je π ⊥ l2, to
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je π ⊥ π2. Zato prava AX pripada ravni π. Dakle, ako je B taqka preseka ravni
π i prave l2, onda je ∠BXA = 90◦, tj. taqka X pripada kru¼nici preqnika AB
konstruisanoj u ravni π .

Sl. 4 Sl. 5

Zadatak 5. Prave l1 i l2 dodiruju sferu. Du� MN qiji krajevi pripada-
ju tim pravim dodiruje sferu u taqki C (sl. 5). Odrediti GMT taqaka C.

Rexeǌe. Neka prava l1, koja sadr¼i
taqku M , dodiruje sferu u taqki A, a
prava l2 u taqki B. Postavimo kroz pra-
vu l1 ravan paralelnu sa l2, i posmatraj-
mo projekciju na tu ravan u pravcu prave
AB (sl. 6). Neka su N ′ i C ′ slike taqaka
N i C pri toj projekciji. Kako je AM =
AC i BN = NC, onda je AM : AN ′ =
AM : BN = CM : CN , a na osnovu Ta-
lesove teoreme je CM : CN = C ′M :
C ′N ′, pa je AM : AN ′ = C ′M : C ′N ′,
tj. AC ′ je simetrala ∠MAN ′. Odatle
sledi da ravan ABCC ′ obrazuje jednake
uglove sa pravim MA i AN ′, tj. l1 i l2
(inaqe, takvih ravni ima dve). Tra¼eno
GMT su dve kru¼nice po kojima te ravni
seku datu sferu; taqke A i B pri tome
treba iskǉuqiti u sluqaju kada se prave
l1 i l2 ne seku.

Sl. 6

Zadatak 6. Taqke A i B le�e sa iste strane ravni π, pri qemu prava
AB nije paralelna sa ravni π. Odrediti GMT centara sfera koje sadr�e
date taqke i dodiruju datu ravan.
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Rexeǌe. Neka je C taqka preseka prave AB
sa datom ravni, i neka je taqka M taqka dodi-
ra jedne od tra¼enih sfera sa ravni π (sl. 7).
Kako je CM2 = CA · CB, to taqka M pripada
kru¼nici polupreqnika

√
CA · CB sa centrom u

taqki C. Sledi da centar O sfere pripada omo-
taqu pravog vaǉka qija je osnova ta kru¼nica.
Osim toga, centar sfere pripada ravni koja pro-
lazi kroz sredixte du¼i AB i koja je na ǌu nor-
malna.

Sl. 7

Posmatrajmo sada taqku O omotaqa vaǉka koja je jednako udaǉena od taqaka
A i B. Tada je rastojaǌe od taqke C do projekcije M taqke O na ravan π jednako√

CA · CB. Neka je CM1 tangenta sfere polupreqnika OA sa centrom u taqki
O, pa je CM2

1 = CA · CB. Tada je CM = CM1, pa je OM2 = CO2 − CM2 =
CO2 −CM2

1 = OM2
1 , tj. taqka M pripada posmatranoj sferi. Kako je OM ⊥ π,

onda je M taqka dodira te sfere i ravni π. Dakle, tra¼eno GMT je presek
omotaqa vaǉka i ravni.

Zadatak 7. Dve ravni paralelne datoj ravni π seku ivice triedra u
taqkama A, B, C i A1, B1, C1 (taqke oznaqene istim slovom pripadaju
istoj ivici). Odrediti GMT preseka ravni ABC1, AB1C i A1BC.

Rexeǌe. Presek ravni ABC1 i AB1C
je prava AM , gde je M taqka preseka dija-
gonala BC1 i B1C trapeza BCC1B1 (sl. 8).
Neka su S1 i S2 sredixta du¼i, redom,
B1C1 i BC. Homotetijom sa centrom u taq-
ki S du¼ B1C1 se preslikava u du¼ BC, pa
su taqke S, S1, S2 kolinearne. Doka¼imo
da taqka M pripada pravoj p(S, S1, S2). Ne-
ka je M ′ taqka preseka pravih p(B, C1) i
p(S1, S2), i B′

1 taqka preseka pravih
p(M ′, C) i p(B1, C1). S obzirom da va¼i
sliqnost trouglova: 4S1C1M

′ ∼ 4S2BM ′

i 4S1B
′
1M

′ ∼ 4S2CM ′, sledi da je S1C1 :
S2B = S1M

′ : M ′S2 i B′
1S1 : CS2 = S1M

′ :
M ′S2. Odatle je S1C1 : S2B = B′

1S1 : CS2,
a kako je S2B = CS2, zakǉuqujemo da je
S1C1 = B′

1S1, pa je B1 ≡ B′
1, xto znaqi da

se taqke M i M ′ poklapaju. Dakle, taqka
M pripada pravoj l = p(S, S1, S2).

Sl. 8

Prava l je jednoznaqno odre±ena sa ravni π, jer prava l prolazi kroz sre-
dixta svih du¼i paralelnih ravni π, a qiji se krajevi nalaze na ivicama SB

i SC triedra, pa mo¼emo posmatrati bax du¼ DE u ravni π qiji se krajevi
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nalaze na ivicama SB i SC triedra, potom na²i ǌeno sredixte P , spojiti sa
taqkom S i na taj naqin konstruisati pravu l. Odatle sledi da je i ravan πa

jednoznaqno odre±ena, jer sadr¼i pravu l i ivicu SA triedra. Taqka preseka
prave AM i ravni A1BC pripada ravni πa, jer toj ravni pripada cela prava
AM . Analogno ravni πa konstruixemo ravan πb. Neka je m prava preseka tih
ravni (ravan πc tako±e sadr¼i pravu m). Tra¼eno GMT su taqke te prave koje
pripadaju unutraxǌosti datog triedra.

Zadatak 8. Dat je ravan qetvorougao ABCD. Odrediti GM takvih
taqaka M da se omotaq piramide MABCD mo�e prese�i sa ravni tako da
se u preseku dobije: a) pravougaonik; b) romb.

Rexeǌe. Neka su P i Q taqke preseka, redom, produ¼etaka naspramnih
stranica CD i AB, AD i BC qetvorougla ABCD. Tada su MP i MQ prave
preseka ravni naspramnih strana piramide MABCD (sl. 9). Pretpostavimo
da su taqke R, S, T , F , redom, na pravim MA, MB, MC, MD takve da je

qetvorougao RSTF paralelogram. Po-
ka¼imo da je prava MQ paralelna ravni
RSTF . Pretpostavimo suprotno, i neka
je H taqka preseka prave MQ i ravni
RSTF . Kako je prava ST presek rav-
ni MCQ i RSTF , a taqka H pripada
obema ravnima, sledi da prava ST sa-
dr¼i taqku H. Analogno se pokazuje da
prava RF sadr¼i taqku H. Dakle, pra-
ve RF i ST se seku u taqki H, xto je
kontradikcija sa pretpostavkom da je qe-
tvorougao RSTF paralelogram. Odatle
sledi da je prava MQ paralelna ravni
RSTF . Analogno se pokazuje da je pra-
va MP paralelna ravni RSTF . Zato
je presek piramide MABCD paralelo-
gram sako ako je ravan preseka paralelna
sa ravni MPQ, i pri tome su stranice
paralelograma paralelne sa MP i MQ.

Sl. 9

a) U preseku mo¼emo dobiti pravougaonik samo ako je ∠PMQ = 90◦, tj.
taqka M pripada sferi preqnika PQ. Taqke te sfere koje pripadaju ravni
datog qetvorougla treba iskǉuqiti.

b) Neka su K i L taqke preseka produ¼etaka dijagonala AC i BD sa pra-
vom PQ. Poxto su dijagonale paralelograma, koji se dobija u preseku pira-
mide MABCD, paralelne pravim MK i ML, onda je presek romb samo ako je
∠KML = 90◦, tj. taqka M pripada sferi preqnika KL. Taqke te sfere koje
pripadaju ravni datog qetvorougla treba iskǉuqiti.
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Zadaci za ve�bu
Zadatak 1. Odrediti GM sredixta du¼i date du¼ine d, qiji krajevi le¼e

na dvema datim mimoilaznim pravim.

Zadatak 2. Date su tri prave l1, l2 i l3, od kojih su svake dve mimoilazne.
Prave l1, l2 i l3 su normalne na jednu pravu i seku je redom u taqkama A1, A2

i A3. Neka su M i N taqke pravih l1 i l2 takve da se prave l3 i MN seku.
Odrediti GM sredixta du¼i MN .

Zadatak 3. Odrediti GMT qiji je zbir rastojaǌa do ravni koje sadr¼e
strane datog triedra konstantan.

Zadatak 4. U ravni je dat oxtgrougli trougao ABC. Odrediti GM pro-
jekcija na tu ravan svih taqaka M za koje su trouglovi ABM , BCM i CAM
oxtrougli.

Kako ne postoje univerzalni obrasci ili precizna uputstva, qijom bi prime-
nom jednostavno i sigurno uqenik u bilo kom zadatku otkrio rexeǌe, on mora da
vrxi odre±ena istra¼ivaǌa i proveravaǌa, kako bi otkrio pravi put ka rexeǌu
problema. Na tom putu on se slu¼i misaonim postupcima i metodama koje usme-
ravaju tragaǌe i omogu²avaju da br¼e prona±e rexeǌe zadatog geometrijskog
ili nekog drugog matematiqkog problema.

Zakǉuqujemo da bi trebalo uqenike upoznati sa geometrijskim problemima
u prostoru jer se tako podstiqu na razmixǉaǌe i pronalaze razne pristupe u re-
xavaǌu jednog te istog problema. Rexavaǌem tih zadataka, kod uqenika se budi
interesovaǌe i pokre²e dosetǉivost produkuju²i do¼ivǉaje napetosti samoan-
ga¼ovaǌa. Ovakvi do¼ivǉaji mogu stvoriti sklonost za umni rad, ostavǉaju²i
neizbrisiv trag na duh i karakter mladog qoveka.

Zahvaǉujem se dr Ratku Toxi²u koji mi je nesebiqno pomogao prilikom
izbora teme i realizacije ovog rada.
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