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XTA SU TO POTPUNO INTEGRABILNI
HAMILTONOVI SISTEMI?

1. Uvod

Rexavaǌe konkretnih mehaniqkih i astronomskih problema je bio jedan od
osnovnih zadataka matematike do poqetka XX veka. ǋime su se izme±u ostalih
bavili Ojler, Largan¼, Hamilton, Abel, Jakobi, Kovaǉevska, Qapligin, Poen-
kare. Ve²ina problema nije rexiva. Zato je pronala¼eǌe rexivih sistema i
ǌihova analiza od izuzetnog znaqaja.

Poqevxi od druge polovine XX veka dolazi do velikog prodora u istra¼i-
vaǌu i daju se osnove savremene teorije integrabilnih sistema. Mnogi veliki
matematiqari poput Laksa, Novikova, Arnoǉda, Mozera, Mamforda, Dubrovi-
na, Kozlova, dali su svoj doprinos razvoju teorije, koja u sebi povezuje lepotu
klasiqne mehanike i diferencijalnih jednaqina sa algebarskom, simplektiqkom
i diferencijalnom geometrijom, teorijom Lijevih grupa i algebri.

Ciǉ ovog qlanka je da se qitaoci upoznaju sa osnovnim pojmovima teorije
integrabilnih sistema. Mnogi mehaniqki i fiziqki sistemi se modeluju Ha-
miltonovim jednaqinama. Uvo±eǌe jednaqina motivisa²emo jednim od najje-
dnostavnijih problema – harmonijskim oscilatorom i sistemom n nezavisnih
harmonijskih oscilatora (sekcija 2). Jednaqine Harmonijskog oscilatora, kao
linearne, lako se rexavaju i rexeǌa sistema se izra¼avaju kao trigonometrij-
ske funkcije vremena (sekcija 3). Dinamika se linearizuje na invarijantnim
povrxima koje predstavǉaju proizvod kru¼nica (torusima).

Pokazuje se da i mnogo slo¼eniji Hamiltonovi problemi, ukoliko imaju do-
voǉan broj integrala kretaǌa, koji se u fizici nazivaju i zakoni odr¼aǌa, imaju
sliqno kvalitativno ponaxaǌe. To je sadr¼aj Liuvil-Arnoǉdove teoreme koju
bez dokaza navodimo u sekciji 5. U sekciji 4 definisana je Puasonova zagrada.
To je veoma va¼na geometrijska struktura koja omogu²ava da se u prouqavaǌu
Hamiltonovih sistema koriste analitiqke, algebarske i geometrijske metode.

Rad je napisan u okviru projekta 144014 Geometrija i topologija, mnogostrukosti i integra-
bilni dinamiqki sistemi, Ministarsva za nauku Srbije. Zahvaǉujem se Borislavu Gaji²u, Vixǌi
Jovanovi², §or±u Barali²u i Draganu Blagojevi²u na korisnim primedbama.

Autor je dobitnik nagrade na 12. Srpskom matematiqkom kongresu, Novi Sad 2008, kao najboǉi
mladi matematiqar (do 40 godina).
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2. Hamiltonove jednaqine

2.1. Jox u sredǌoj xkoli smo nauqili da se kretaǌe materijalne taqke
mase m pod uticajem sile oblika −aq , a > 0, gde je q otklon od ravnote¼nog po-
lo¼aja q = 0 (na primer, kretaǌe materijalne taqke vezane za elastiqnu oprugu
koeficijenta elastiqnoti a, ili male oscilacije matematiqkog klatna jedini-
qne du¼ine, gde je q otklon od ravnote¼og polo¼aja, m masa materijalne taqke
i a = mg sila Zemǉine te¼e) opisuje jednaqinama:

mq̈ = −aq. (1)

Uvo±eǌem promenǉive p = mq̇ (impulsa) i funkcije h(q, p) =
1

2m
p2 +

a

2
q2

(zbir kinetiqke i potencijalne energije sistema) jednaqina drugog reda (1) do-
bija oblik sistema jednaqina prvog reda u prostoru R2(q, p):

q̇ =
p

m
=

∂h

∂p
, ṗ = −aq = −∂h

∂q
. (2)

Sl. 1. Sistem n nezavisnih elastiqnih opruga.

Posmatrajmo sada sistem od n nezavisnih harmonijskih oscilatora (na pri-
mer sistem od n elastiqnih opruga). Kao i malopre, u prostoru R2n(q, p) =
R2n(q1, . . . , qn, p1, . . . , pn) jednaqine kretaǌa mo¼emo napisati u obliku:

q̇i =
pi

mi
=

∂h

∂pi
, ṗi = −aiqi = − ∂h

∂qi
, i = 1, . . . , n (3)

(ai > 0), gde funkcija h(q, p) =
n∑

i=1

(
1

2mi
p2

i +
ai

2
q2
i

)
predstavǉa ukupnu energiju

mehaniqkog sistema.

2.2. Sistem jednaqina

q̇i =
∂h

∂pi
, ṗi = − ∂h

∂qi
, i = 1, . . . , n (4)

definisanih u nekoj oblasti U prostora R2n(q1, . . . , qn, p1, . . . , pn) nazivaju se
Hamiltonovim jednaqinama, funkcija h se naziva Hamiltonijan, dok se
oblast U naziva fazni prostor sistema. Uvo±eǌen promenǉive x =
(q1, . . . , qn, p1, . . . , pn) i Hamiltonovog vektorskog poǉa

Xh =
(

∂h

∂p1
, . . . ,

∂h

∂pn
,− ∂h

∂q1
, . . . ,− ∂h

∂qn

)
, (5)

jednaqine (4) zapisujemo ẋ = Xh(x).
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2.3. Podsetimo se nekih osnovnih pojmova iz teorije obiqnih diferencijal-
nih jednaqina. Neka su u oblasti U ⊂ Rd zadate jednaqina

ẋ = X(x). (6)

Ovde je x = (x1, . . . , xd) taqka iz U a X = (X1(x), . . . , Xd(x)) glatko vektorsko
poǉe na U . Po teoremi o egzistenciji i jedinstvenosti rexeǌa, kroz svaku
taqku x0 iz M prolazi jedinstveno rexeǌe x(t), takvo da je x(t0) = x0. Pod
integrabilnox�u jednaqina, u najxirem kontekstu podrazumeva se mogu²nost
pronala¼eǌa i samo pronala¼eǌe rexeǌa jednaqina x(t) za opxti poqetni uslov
x(t0) = x0.

U rexavaǌu jednaqina va¼nu ulogu igraju integrali kretaǌa. Funkcije f
je integral jednaqine (6) ukoliko je kontantna du¼ svih rexeǌa x(t): f(x(t)) =
const. Jasno je da je f integral ako i samo ako je izvod funkcije f u pravcu
vektorskog poǉa X identiqki jednak nuli:

X(f) =
d∑

i=1

Xi
∂f

∂xi
≡ 0.

Geometrijski, to znaqi da ukoliko u jednom trenutku vremena trajektorija
x(t) pripada skupu Mc : f(x) = c, da tada ona i le¼i unutar Mc. Ukoliko je
diferencijal integrala df razliqit od nule na Mc, tada je Mc glatka povrx.
Vektori Xx tangiraju Mc za svako x ∈ Mc.

Sl. 2. Invarijantna povrx Sl. 3. Raslojavaǌe faznog prostora na invarijantne toruse

Ukoliko jednaqine (6) imaju l funkcionalno nezavisnih integrala kretaǌa,
problem se redukuje na rexavaǌe su¼enog sistema na (za opxte vrednosti para-
metara c = (c1, . . . , cl)) invarijantnoj (d − l)-dimenzionoj glatkoj povrxi Mc :
f1(x) = c1, . . . , fr(x) = cl. Jasno je da postojaǌe d − 1 integrala povlaqi rexa-
vaǌe opxteg sistema (6).

Kao xto ²emo uskoro videti, u okviru teorije Hamiltonovih sistema za re-
xavaǌe jednaqina (4) potrebno je ,,samo“ n integrala kretaǌa. Xtavixe, fazni
prostor potpuno integrabilnog Hamiltonovog sistema ima veoma finu struktu-
ru: on je, skoro svuda, raslojen na invarijantne n-dimenzione toruse na kojima
se dinamika linearizuje.

Setimo se da je n-dimenzioni torus Tn direktni proizvod n kru¼nica:
Tn = S1 × · · · × S1. Neka su (ϕ1, . . . , ϕn) koordinate vektorskog prostora Rn.
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Tada imamo prirodno preslikavaǌe π : Rn → Tn, π(ϕ) = ϕ (mod 2π), gde je
je ϕi (mod 2π) uglovna koordinata na i-toj kru¼nici. Preslikavaǌe π je na
i 2π periodiqno po svakoj koordinati. Tako torus mo¼emo zamisliti i kao
n-dimenzionu kocku [0, 2π]n ⊂ Rn(ϕ1, . . . , ϕn) na kojoj su taqke sa koordinata-
ma (ϕ1, . . . , ϕi−1, 0, ϕi+1, . . . , ϕn) i (ϕ1, . . . , ϕi−1, 1, ϕi+1, . . . , ϕn), i = 1, . . . , n, tj.
naspramne strane kocke, identifikovane.

Linearno kretaǌe na torusu je projek-
cija prave preslikavaǌem π:

ϕ(t) = ϕ0 + ωt

⇐⇒ ϕi(t) = ϕ0
i + ωit, i = 1, . . . , n. (7)

Takvo kretaǌe se naziva i uslovno-perio-
diqnim ili kvazi-periodiqnim. Brojevi
ω1, . . . , ωn se nazivaju frekvencije.

Sl. 4. Uslovno-periodiqno kretaǌe

2.4. Potpuno integrabilni Hamiltonovi sistemi su veoma retki. Mo¼emo
slobodno re²i da ukoliko izaberemo sluqajan Hamiltonijan da ²e odgovaraju-
²e Hamiltonove jednaqine biti neintegrabilne. Ipak, po Kolmogorov-Arnoǉd-
Mozerovoj (KAM) teoremi ukoliko imamo potpuno integrabilni sistem sa Ha-
miltonijanom h0(x) i izvrximo perturbaciju h(x) = h0(x) + εh1(x), tada ²e i
Hamiltonov sistem sa Hamiltonijanom h(x) zadr¼ati odre±ene osobine potpuno
integrabilnog sistema (uz odre±ene dopunske uslove na frekvencije kretaǌa i za
dovoǉno male vrednosti parametra ε). Naime odre±en broj torusa ,,pre¼ivǉava“
perturbaciju [Ar].

Na primer, posmatrajmo nax Sunqev sistem i zamislimo da se sastoji samo
od Sunca koje je nepokretno i osam planeta. Ukoliko zanemarimo me±usobno dej-
stvo planeta, iz gravitacionog privlaqeǌa Sunca i svake planete pojedinaqno,
Keplerovi zakoni nam daju da ²e se kretaǌe planeta, ukoliko je ograniqeno, od-
vijati po elipsama qija je jedna od ¼i¼a Sunce. To je poptpuno integrabilan
sistem i imamo raslojavǌe faznog prostora na toruse dimenzije 8. U realnosti,
i planete se me±usobno privlaqe, xto odgovara perturbaciji sistema. Dobi-
jamo sistem jednaqina koji je neintegrabilan. Mo¼emo aproksimirati kretaǌe
planeta elipsama, ali dugoroqno ne mo¼emo predviditi dinamiku, qak i toliko
uprox²enog modela Sunqevog sistema.

3. Rexavaǌe harmonijskog oscilatora

3.1. Jednaqina (2) se jednostavno rexava. Lako se proverava da je energija
h integral kretaǌa:

d

dt
h(q, p) =

1
2m

2pṗ +
a

2
2qq̇ =

1
m

apq − 1
m

apq = 0.
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Primetimo da jednaqina h(q, p) = E, za E > 0 zadaje elipsu EE u R2(q, p). Na
elipsi EE uvedimo uglovnu koordinatu ϕ (mod 2π) formulama

q =
√

2E/a cos(ϕ), p = −
√

2Em sin(ϕ). (8)

Iz jednaqina kretaǌa (2) dobijamo ϕ̇ =
√

a/m. Odatle, integracijom izvodimo
dobro poznate izraze

q(t) =
√

2E/a cos
(√

a/mt + ϕ0
)

, p(t) = −
√

2Em sin
(√

a/mt + ϕ0
)

.

Konstante E > 0 i ϕ0 ∈ [0, 2π) odre±ujemo iz poqetnih uslova (q(t0), p(t0)).
Poqetni uslov (q(t0), p(t0)) = (0, 0) zadaje ravnote�ni polo�aj sistema, na-
ime tada je rexeǌe jednostavno (q(t), p(t)) ≡ (0, 0).

Sl. 5. Fazni prostor harmonijskog oscilatora.

3.2. Sistem (3) ima n nezavisnih integrala kretaǌa

fi(q, p) = fi(qi, pi) =
1

2mi
p2

i +
ai

2
q2
i , i = 1, . . . , n (9)

(energija i-tog harmonijskog oscilatora) i fazni prostor je raslojen na invari-
jantne povrxi

TE = {(q1, . . . , qn, p1, . . . , pn) ∈ R2n | f1 = E1, . . . , fn = En}. (10)

U opxtem sluqaju, ukoliko su sve konstante Ei ve²e od nule tada je TE jednak
proizvodu elipsi: TE = EE1 × · · · × EEn , EEi = {(qi, pi) | fi = Ei} i predstavǉa
n-dimenzioni torus Tn. Ako je neka od konstanti Ei jednaka nuli kretaǌe se
odvija po torusima maǌe dimenzije.

Uvedimo uglovne koordinate (ϕ1, . . . , ϕn) na TE formulama

qi =
√

2Ei/ai cos(ϕi), pi = −
√

2Eimi sin(ϕi), i = 1, . . . , n.

Jednaqine (3) se u uglovnim koordinatama linearizuju

ϕ̇i = ωi =
√

ai/mi, i = 1, . . . , n. (11)

Opxte rexeǌe mo¼emo izraziti u obliku:

qi(t) =
√

2Ei/ai cos
(
ωit + ϕ0

i

)
, pi(t) = −

√
2Eimi sin

(
ωit + ϕ0

i

)
, i = 1, . . . , n,

(12)
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gde iz poqetnih uslova odre±ujemo konstante Ei ≥ 0 i ϕ0
i ∈ [0, 2π). Ravnote¼ni

polo¼aj sistema zadat je uslovom (q1, . . . , qn, p1, . . . , pn)|t0 = 0.

4. Puasonova struktura

4.1. Kanonska Puasonova struktura (ili kanonska Puasonova zagrada) u
oblasti U ⊂ R2n je preslikavaǌe {·, ·} : C∞(U)×C∞(U) → C∞(U), definisano
izrazom:

{f, g} =
n∑

i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
(13)

Specijalno, za koordinatne funkcije qi, pj va¼e kanonske relacije:

{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij , i, j = 1, . . . , n.

Stav 1. Puasonova zagrada je bilinearno, kososimetriqno preslikavaǌe
(14), koje zadovoǉava Lajbnicovo pravilo (15) kao i Jakobijev identitet
(16):

{αf + βg, h} = α{f, h}+ β{g, h}, {f, g} = −{g, f}, (14)

{fg, h} = f{g, h}+ g{f, h}, (15)

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0, α, β ∈ R, f, g, h ∈ C∞(U).
(16)

Stav 2. Izvod funkcije f du� Hamiltonovog vektorskog poǉa (5) dat
je izrazom (koji se mo�e koristiti kao ekvivalentna definicija Hamil-
tonovog vektorskog poǉa (5)): ḟ = Xh(f) = {f, h}.

Navedeni stav nam omogu²ava da damo algebarsku karakteristiku integrala
kretaǌa.

Stav 3. Funkcija f je integral sistema (4) ako i samo ako komutira
sa h: {h, f} = 0. Specijalno, sam Hamiltonijan je integral kretaǌa.

Oquvaǌe Hamiltonijana h du¼ rexeǌa jednaqine (4) u mehanici i fizici
se naziva i zakon oquvaǌa energije.

Pomo²u Jakobijevog identiteta (16) i stava 3, dolazimo do tvr±eǌa:

Stav 4. Ukoliko su funkcije f i g integrali kretaǌa Hamiltonovog
sistema (4), tada je to i ǌihova Puasonova zagrada {f, g}.

Primetimo da ukoliko integrali f i g komutiraju, stav 4 nam daje trivi-
jalni integral. Me±utim tada imamo jak geometrijski uslov: funkcije h, f , g
su konstantne du¼ Hamiltonovih vektorskih poǉa Xh, Xf i Xg. Tako vektorska
poǉa Xh, Xf i Xg tangiraju invarijantne povrxi h = c1, f = c2, g = c3.

Ve�baǌe 1. Dokazati tvr±eǌa formulisana u ovom odeǉku.
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4.2. Kao xto je i uobiqajeno u algebri, imaju²i klasu objekata sa odre-
±enom operacijom, posmatraju se i preslikavaǌa me±u objektima koji quvaju tu
operaciju.

Neka su U i V oblasti unutar R2n sa gore definisanom kanonskom Puaso-
novom strukturom. Difeomorfizam Ψ : U → V 1 je Puasonov izomorfizam, ili
kanonska transformacija ukoliko oquvava Puasonovu zagradu:

{f ◦Ψ, g ◦Ψ} = {f, g}, f, g ∈ C∞(V ).

Lako se pokazuje da je tada i Ψ−1 : V → U kanonska transformacija, kao i da je
kompozicija kanonskih transformacija, kanonska transformacija.

Neka je difeomorfizam Ψ : U → V zadat funkcijama Qi = Qi(q, p), Pi =
Pi(q, p), i = 1, . . . , n. Tada je Ψ kanonska transformacija ako i samo ako funkcije
Qi, Pj zadovoǉavaju kanonske relacije: {Qi, Qj} = 0, {Pi, Pj} = 0, {Qi, Pj} =
δij .

Va¼na osobina kanonskih transformacija je da ih ukoliko posmatramo kao
promenu koordinata, da tada Hamiltonove jednaqine (4) u novim koordinatama
(Q,P ) quvaju svoj oblik i glase

Q̇i =
∂H

∂Pi
, Ṗi = − ∂H

∂Qi
, i = 1, . . . , n, (17)

gde je H(Q,P ) = h(q(Q,P ), p(Q,P )). Pri tome funkcije qi = qi(Q,P ), pi =
pi(Q,P ) predstavǉaju inverznu kanonsku transformqciju Ψ−1.

5. Potpuna integrabilnost

Jednostavno se proverava da integrali (9) sistema n nezavisnih harmonij-
skih oscilatora me±usobno komutiraju.

Definicija 1. Za Hamiltonov sistem (4) ka¼emo da je potuno inte-
grabilan ukoliko poseduje n funkcionalno nezavisnih integrala koji me±usobno
komutiraju.

Teorema 1. (Liuvil-Arnoǉd [Ar]) Neka jednaqine (4) imaju n komuta-
tivnih integrala f1, . . . , fn:

{fi, fj} = 0, i, j = 1, . . . , n,

i neka je Pc = {f1 = c1, . . . , fn = cn} invarijantna povrx. Ako je Pc povezana,
kompaktna, glatka povrx (diferencijali funkcija f1, . . . , fn su nezavisni na
Pc) tada je ona difeomorfna n-dimenzionom torusu Tn. Postoji okolina
V od Pc difeomorfna proizvodu n-dimenzionog torusa Tn i otvorene lopte
Bn ⊂ Rn i kanonska transformacija Ψ : V → V ,

ϕi = ϕi(q, p) (mod 2π), Ii = Ii(q, p), i = 1, . . . , n,

1 Setimo se da je diferencijabilno preslikavaǌe Ψ : U → V (U, V ⊂ Rd)

yi = Ψi(x1, . . . , xd), i = 1, . . . , d

difeomorfizam ukoliko je bijekcija i Jakobijan det(∂yi/∂xj) je razliqit od nule.
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takva da Hamiltonijan h, u koordinatama (ϕ (mod 2π), I) zavisi samo od
I. Skup V ∼= Tn × Bn je raslojen na invarijantne n-dimenione toruse Ii =
const na kojima je dinamika uslovno-periodiqna. Hamiltonove jednaqine u
koordinatama (ϕ, I) imaju oblik

ϕ̇1 = ω1(I) =
∂h

∂I1
, . . . , ϕ̇n = ωn(I) =

∂h

∂In
, İ1 = · · · = İn = 0.

Napomena 1. Koordinate (ϕ, I) nazivaju se koordinatama ugao-dejstvo.
Koordinate dejstva se mogu odrediti integracijom forme pdq = p1 dq1 + · · · +
pn dqn po osnovnim ciklima γ1, . . . , γn torusa Pc, Ii = 1

2π

∮
γi

p dq (videti [Ar]).
Po tome su i dobile naziv koordinate dejstva. Naime u klasiqnoj mehanici
je poznat princip najmaǌeg dejstva (u Mapertju-Ojler-Lagran¼-Jakobijevoj
formi): trajektorije sistema (4) koje le¼e na invarijantnoj povrxi {h(q, p) =
E} su ekstremale funkcionala dejstva

γ 7−→
∫

γ

p1 dq1 + · · ·+ pn dqn

u klasi krivih γ ⊂ {h(q, p) = E} ⊂ R2n(q, p) koje povezuju potprostore {q =
q0} ∩ {h(q, p) = E} i {q = q1} ∩ {h(q, p) = E} [Ar].

Napoemna 2. Na osnovu Liuvil-Arnoǉdove teoreme vidimo da problem
integrabilnosti Hamiltonovih jednaqina (4) u sebi sadr¼i dva osnovna netri-
vijalna zadatka: prona²i dovoǉan broj integrala i eksplicitno na²i opxte
rexeǌe sistema kao funkciju vremena. Ukoliko se i doka¼e da je neki sistem
potpuno integrabilan, samo nala¼eǌe rexeǌa je veoma slo¼eno.

Vratimo se harmonijskom oscilatoru (1). Torusi su elipse EE . Na osnovu
napomene 1, primenom Grinove formule, dobijamo izraz za koordinatu dejstva:

I =
1
2π

∮

EE

p dq =
1
2π

∫

Π

dp dq = E

√
m

a
= h

√
m

a
=

h

ω
,

gde je Π oblast u R2(q, p) ograniqena elipsom EE .

Ve�baǌe 2. Pokazati da za gore definisanu funkciju I i ugao dat izrazom
(8), va¼i kanonska relacija {ϕ, I} = 1, tj. da su (ϕ, I) koordinate ugao-dejstvo.

5.1. Torus sa uslovno-periodiqnim kretaǌem (7) se naziva nerezonantnim
ukoliko su frekvencije nezavisne nad poǉem racionalnih brojeva, tj. ukoliko iz
uslova ω1k1 + · · ·+ ωnkn = 0 sledi da su svi ki = 0.

Na nerezonantnim torusima kretaǌe je ravnomerno svuda gusto. Preciznije
va¼i slede²a teorema H. Vejla (pogledati [Ar]):

Teorema 2. Neka je f : Tn → R Riman-integrabilna i neka su ω1, . . . , ωn

nezavisni nad racionalnim brojevima. Tada za svaku taqku ϕ0 ∈ Tn granica

lim
s→∞

1
s

∫ s

0

f(ωt + ϕ0) dt
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postoji i jednaka je 1
(2π)n

∫ 2π

0
· · · ∫ 2π

0
f(ϕ) dϕ1 . . . dϕn.

Specijalno, pretpostavimo da je f funkcija koja ima vrednost 1 na Zhordan-
merǉivoj oblasti D ⊂ Tn i 0 van ǌe. Primenom teoreme 2, dobijamo da je vreme
koje trajektorija ωt + ϕ0 provodi unutar D proporcionalno meri skupa D. To
govori o ravnomernosti rasporeda trajektorije na torusu Tn.

Posmatrajmo torus (10), gde su parametri Ei > 0. Projekcija torusa TE

na prostor Rn(q1, . . . , qn) je kvadar KE = {(q1, . . . , qn) ∈ Rn | 0 ≤ qi ≤ Ei, i =
1, . . . , n}. Po Vejlovoj teoremi, u sluqaju nerezonantnih frekvencija, dobijamo
da projekcija trajektorije (12):

q(t) =
(√

2E1/a1 cos
(
ω1t + ϕ0

1

)
, . . . ,

√
2En/an cos

(
ωnt + ϕ0

n

))
, t ∈ R

svuda gusto ispuǌava kvadar KE . U sluqaju n = 2, krive (q1(t), q2(t)) nazivaju
se Lisa�uove figure. Kada je ω1/ω2 racionalan broj, one qine zatvorene krive
unutar pravougaonika KE .

Sl. 6. Lisa¼uove figure za ω2/ω1 /∈ Q, ω2/ω1 ≈ 3/2 i ω2/ω1 = 3/2.

5.2. Za daǉe qitaǌe i detaǉnije upoznavaǌe sa osnovama teorije integra-
bilnih sistema preporuqujemo kǌigu Matematiqki metodi mehanike, jednog
od najve²ih matematiqara 20-tog veka Vladimira Arnoǉda [Ar]. Nedavno je
na srpskom jeziku izdata monografija [DM] koju tako±e toplo preporuqujemo.
Dokaz linearizacije u Liuvil-Arnoǉdovoj teoremi izlo¼i²emo u qlanku [Jo],
predvi±enom za jednu od narednih svezaka Nastave matematike.
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