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LINEARIZACIJA INTEGRABILNIH SISTEMA

1. Lijeva algebra Hamiltonovih vektorskih poǉa

1.1. Ovaj qlanak je nastavak [Jo]. Dok smo se u [Jo] upoznali sa potpunom
integrabilnox²u, sada ²emo, se upoznati i sa pojmom nekomutativne integrabil-
nosti, koja odgovara raslojavaǌu faznog prostora na toruse dimenzije maǌe od
polovine dimenzije faznog prostora [MF, N, BJ]. Dajemo dokaz linearizacije ta-
kvih sistema (sekcija 2). Dokaz linearizacije sadr¼i osnovne pojmove dejstava
grupa, ali mo¼e se pratiti i bez ikakvog predznaǌa.

Kao primer navodimo sistem dva identiqna harmonijska oscilatora. Poka-
zuje se da taj sistem daje prirodni opis Hopfovog raslojeǌa sfere na kru¼nice
(sekcija 3). Radi jasnijeg izlagaǌa, podseti²emo se nekih osnovnih pojmova,
delom uvedenih u [Jo].

1.2. Lijeva algebra (g, [·, ·]) nad poǉem realnih brojeva R je realni vek-
torski prostor g zajedno sa operacijom [·, ·] : g × g → g koja je bilinearna,
kososimetriqna i zadovoǉava Jakobijev identitet:

[αX + βY, Z] = α[X, Z] + β[Y, Z],

[X, Y ] = −[Y, X],

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0, α, β ∈ R, X, Y, Z ∈ g.

Osnovni primer konaqno dimenzione Lijeve algebre je (gl(n,R), [·, ·]), gde je
gl(n,R) vektorski prostor n× n realnih matrica i [·, ·] je uobiqajen komutator
matrica: [A,B] = AB − BA. Tako±e, trodimenzioni Euklidski vektorski pro-
stor sa uobiqajenim vektorskim proizvodom (R3,×) je primer Lijeve algebre
koga smo upoznali jox u sredǌoj xkoli.

Sa druge strane jedan od osnovnih primera beskonaqno-dimenzione Lijeve
algebre je (X(V ), [·, ·]) – vektorski prostor vektorskih poǉa na oblasti V ⊂ Rd,
gde je [·, ·] komutator vektorskih poǉa. Poznato je da se vektorsko poǉe X
mo¼e identifikovati sa operatorom diferenciraǌa u pravcu vektorskog poǉa

Rad je napisan u okviru projekta 144014 Geometrija i topologija mnogostrukosti i integrabil-
ni dinamiqki sistemi, Ministarsva za nauku Srbije. Zahvaǉujem se §or±u Barali²u na korisnim
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f 7→ X(f), f ∈ C∞(V ). Komutator [X,Y ] vektorskih poǉa se mo¼e definisati
kao operator diferenciraǌa

[X, Y ](f) = X(Y (f))− Y (X(f)), f ∈ C∞(V ), (1)

gde su X = (X1, . . . , Xd) i Y = (Y1, . . . , Yd) vektorska poǉa X i Y . Komutator
[X, Y ] se iz (1) lako odre±uje:

[X, Y ] =
(

d∑
i=1

(
Xi

∂Y1

∂xi
− Yi

∂X1

∂xi

)
, . . . ,

d∑
i=1

(
Xi

∂Yd

∂xi
− Yi

∂Xd

∂xi

))

1.3. Posmatrajmo jednaqine

ẋ = X(x) (2)

definisane unutar oblasti V ⊂ Rd. Vektorsko poǉe X ∈ X(V ) je kompletno
ukolko indukuje jednoparametarsku grupu difeomorfizama gt

X : V → V ,

gt
X ◦ gs

X = gs
X ◦ gt

X = gt+s
X , g0

X = IdU , t ∈ R,

takvih da su rexeǌa jednaqine (2) sa poqetnim uslovom x(t0) = x0 data sa x(t) =
gt−t0

X x0. Grupa gt
X se naziva i fazni tok jednaqina (2).

Kada X i nije kompletno, ono ipak indukuje grupu lokalnih jednopara-
meterskih difeomorfizama gt

X , definisanih u okolini svake taqke i za male
vrednosti parametra t.

Mo¼e se dati slede²a va¼na geomet-
rijska osobina komutatora vektorskih po-
ǉa: [X,Y ] ≡ 0 u nekoj okolini taqke x ako i
samo ako (lokalne) jednoparametarske gru-
pe difeomorfizama gt

X i gs
Y komutiraju:

gt
X ◦ gs

Y = gs
Y ◦ gt

X ,

za odgovaraju²u okolinu taqke x i dovoǉno
male parametre t i s [Ar].

Slika 1. Komutativna vektorska poǉa:

gt
X(gs

Y (x)) = gs
Y (gt

X(x)).

Neka je M ⊂ V kompaktna povrx i neka je vektorsko poǉe X(x) u taqkama
x ∈ M tangentno na M . Tada, iako X ne mora biti kompletno vektorsko poǉe
na V , X indukuje jednoparametarsku grupu difeomorfizama gt

X povrxi M .

1.4. Kanonska Puasonova struktura (ili kanonska Puasonova zagrada) u
oblasti U prostora R2n(q, p) = R2n(q1, . . . , qn, p1, . . . , pn) je preslikavaǌe {·, ·} :
C∞(U)× C∞(U) → C∞(U), definisano izrazom:

{f, g} =
n∑

i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
(3)

Vektorski prostor glatkih funkcija na U ⊂ R2n u odnosnu na Puasonovu
zagradu je primer beskonaqo-dimenzione Lijeve algebre. Puasonova zagrada je
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bilinearno, kososimetriqno preslikavaǌe koje zadovoǉava Jakobijev identitet
kao i Lajbnicovo pravilo: {fg, h} = f{g, h}+ g{f, h}.

Za datu glatku funkciju h(q, p), definixemo Hamiltonovo vektorsko po-
ǉe Xh(q, p) uslovom da je izvod proizvoǉne funkcije du¼ vektorskog poǉa Xh

dat Puasonovom zagradom:
Xh(f) = {f, h}, (4)

ili, ekvivalentno, izrazom:

Xh =
(

∂h

∂p
,−∂h

∂q

)
=

(
∂h

∂p1
, . . . ,

∂h

∂pn
,− ∂h

∂q1
, . . . ,− ∂h

∂qn

)
.

Jednaqine
(q̇, ṗ) = Xh(q, p) (5)

nazivaju se Hamiltonove jednaqine sa Hamiltonijanom h(q, p). Iz (4) imamo
slede²u karakteristiku integrala: funkcija f je integral sistema (5) ako i
samo ako komutira sa h: {h, f} = 0. Specijalno, sam Hamiltonijan je integral
kretaǌa.

Tako je funkcija f integral ako i samo ako je i Hamiltonijan h konstantan
du¼ Hamiltonovog vektorskog poǉa Xf , tj. (lokalni) fazni tok vektorskog poǉa
Xf je simetrija Hamiltonijana h: h ◦ gt

Xf
= h.1

Neka je (X(U), [·, ·]) Lijeva algebra vektorskih poǉa na U ⊂ R2n.

Stav 1. Preslikavaǌe

C∞(U) −→ X(U) : f 7−→ Xf (6)

je anti-homomorfizam Lijevih algebri2. Naime va�i:

Xαf+βg = αXf +βXg, X{f,g} = −[Xf , Xg], α, β ∈ R, f, g ∈ C∞(U). (7)

Dokaz. Prva relacija u (7) je oqigledna. Neka je h proizvoǉna funkcija.
Tada

[Xf , Xg](h) = XfXg(h)−XgXf (h) ( definicija komutatora)

= Xf ({h, g} −Xg({h, f}) ( jednaqina (4))

= {{h, g}, f} − {{h, f}, g} ( jednaqina (4))

= −{h, {f, g}} ( Jakobijev identitet)

= −X{f,g}(h) ( jednaqina (4)).

1 Va¼na osobina Hamiltonovog vektorskog poǉa Xf , koju ne²emo direktno koristiti u ovom
izlagaǌu, jeste da je ǌegov fazni tok (lokalna) kanonska transformacija, naime: {f1 ◦ gt

Xf
, f2 ◦

gt
Xf
} = {f1, f2} [Ar].
2 Homomorfizam (izomorfizam) Lijevih algebri (g1, [·, ·]1) i (g2, [·, ·]2) je linearno presli-

kavaǌe (izomorfizam) vektorskih prostora A : g1 → g2 koje quva strukturu Lijeve algebre:
[AX, AY ]2 = [X, Y ]1, X, Y ∈ g1.
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2. Nekomutativna integrabilnost

Jednaqine (5) su potpuno integrabilne ukoliko poseduju n funkcional-
no nezavisnih integrala koji me±usobno komutiraju. Na osnovu stava 1, vidimo
da komutativnim integralima odgovaraju simetrije Hamiltonijana u odnosu na
(lokalna) komutativna dejsta faznih tokova odgovaraju²ih Hamiltonovih vek-
torskih poǉa. Sa druge strane, u zavisnosti od fiziqkog problema, dexava se
da Hamiltonovi sistemi imaju i ,,nekomutativne simetrije“, tj. prve integrale
koji ne komutiraju. To je dovelo do pojma nekomutativne integrabilnosti kome
odgovara slede²a teorema (videti [MF, N]):

Teorema 1. Neka jednaqine (5) imaju n+r integrala kretaa f1, . . . , fn+r,
takvih da prvih n− r komutiraju sa svim integralima

{fi, fj} = 0, i = 1, . . . , n− r, j = 1, . . . , n + r,

i neka je Pc = {f1 = c1, . . . , fn+r = cn−r} invarijantna povrx. Ako je Pc

povezana kompaktna, glatka povrx (diferencijali funkcija f1, . . . , fn+r su
nezavisni na Pc) tada je ona difeomorfna (n−r)-dimenzionom torusu Tn−r.
Na Pc se mogu odrediti koordinate ϕ1, . . . , ϕn−r (mod 2π) u kojima se jedna-
qine (5) linearizuju:

ϕ̇1 = ω1, . . . , ϕ̇n−r = ωn−r. (8)

Specijalno, za r = 0 imamo linearizaciju u Liuvil-Arnoǉdovoj teoremi.
Za sisteme koje zadovoǉavaju uslove teoreme sa 1 ≤ r ≤ n−1 ka¼emo da su inte-
grabilnim u nekomutativnom smislu. Oni su ujedno i potpuno integrabilni,
tj. imaju n komutativnih integrala [BJ].

Neznatno modifikuju²i pristup iz [Ar], dajemo dokaz teoreme 1.
Neka je Γ podgrupa Rn. Ukoliko postoji okolina U takva da je Γ∩U = {0},

tada ²e i presek e + U sa Γ sadr¼ati samo e, za sve e ∈ Γ. Takve podgrupe
nazivamo diskretnim podgrupama ili rexetkama u Rn.

Slika 2

Lema 1. Neka je Γ rexetka u Rn. Tada postoji k ≤ n linearno neza-
visnih vektora e1, . . . , ek ∈ Γ, takvih da je Γ zadata ǌihovim celobrojnim
kombinacijama

Γ = {m1e1 + · · ·+ mkek | (m1, . . . ,mk) ∈ Zk }.
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Dokaz. Neka je W vektorski podprostor od Rn, generisan skupom Γ i neka
je dim W = k ≤ n. Mo¼emo uzeti bazu e′1, . . . , e

′
k od W , gde e′i pripadaju Γ.

Dakle svi elementi iz rexetke Γ se mogu dobiti kao realne linearne kombinacije
e′1, . . . , e

′
k. Posmatrajmo familiju potprostora

W1 = 〈e′1〉 ⊂ W2 = 〈e′1, e′2〉 ⊂ · · · ⊂ Wk = W = 〈e′1, . . . , e′k〉.
Tra¼enu bazu konstruixemo na slede²i naqin. Neka je e1 6= 0 jedan od dva
elementa iz Γ ∩W1 najbli¼ih 0 (drugi je tada −e1). Iz konstrukcije imamo

Γ ∩W1 = {m1e1 | m1 ∈ Z }.
Daǉe, za e2 uzimamo element iz Γ ∩ W2, koji ne pripada W1 i koji dosti¼e
minimalno rastojaǌe od W1. (Zaxto postoji takav element?) Tada je

Γ ∩W2 = {m1e1 + m2e2 | m1,m2 ∈ Z }.
Zaista, ako postoji e′ ∈ Γ ∩W2 van tog skupa, tada linearnom celobrojnom

kombinacijom sa e1 i e2 dobijamo element e 6= 0 koji pripada Γ, kao i poluotvo-
renom paralelogramu

Π(e1, e2) = {α1e1 + α2e2 | 0 ≤ α1, α2 < 1 }.
Ako je e = α1e1 to je u suprotnosti sa izborom e1. Sa druge strane, ako je
e = α1e1 + α2e2 (0 < α2 < 1), to je kontradikcija sa izborom e2 jer je tada
rastojaǌe izme±u e i W1 maǌe od rastojaǌa izme±u e2 i W1.

Na sliqan naqin odre±ujemo e3, kao elemenat Γ ∩W3, koji ne pripada W2 a
dosti¼e minimalno rastojaǌe od ravni W2. Postupak nastavǉamo do odre±ivaǌa
ek.

Dokaz teoreme 1. Korak 1. Kako funkcije fi, i = 1, . . . , n − r komutiraju
sa drugim integralima, na osnovu (4) ima²emo da

Xfi(fj) = {fj , fi} = 0, i = 1, . . . , n− r, j = 1, . . . , n + r,

xto za posledicu ima da vektorska poǉa X1 = Xf1 , . . . , Xn−r = Xfn−r tangiraju
invarijantnu povrx Pc.

Tako±e, Hamiltonovo vektorsko poǉe Xf jednako je 0 u x ako i samo ako
je diferencijal funkcije f jednak 0 u x. Kako su diferencijali df1, . . . , dfn−r

nezavisni na Pc, dobijamo da vektorska poǉa Xi razapiǌu tangentni prostor
TxPc za sve x ∈ Pc.

Kako je Pc kompaktno, vektorska poǉa X1, . . . , Xn−r su kompletna. Posma-
trajmo jednoparametarske grupe gsi

i , si ∈ R transformacija Pc zadatih vektor-
skim poǉima Xi. Na osnovu Stava 1 imamo da [Xi, Xj ] = 0 xto povlaqi komuta-
tivnost preslikavaǌa gsi

i i g
sj

j . Definiximo difeomorfizme

gs(x) = gs1
1 · · · gsn−r

n−r (x), s = (s1, . . . , sn−r) ∈ Rn−r. (9)

Tada ²e va¼iti:

gs ◦ gt = gt ◦ gs = gs+t, g0 = IdPc , s, t ∈ Rn−r. (10)
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Uslovi (10) nam daju da je sa (9) dato dobro definisano dejstvo abelove grupe
Rn−r na Pc

3.

Korak 2. Kako su X1, . . . , Xn−r nezavisna vektorska poǉa i kako je Pc pove-
zano, dobijamo da je dejstvo (9) lokalno slobodno (za svako x ∈ Pc, za dovoǉno
malo s ∈ Rn, je gs(x) 6= x) i tranzitivno (za svake dve taqke x, y ∈ Pc postoji
s ∈ Rn−r, gs(x) = y). Zaista, neka je γ proizvoǉan put koji spaja x i y. Tada
na γ postoji niz taqaka x1, . . . , xk−1 i niz vektora s1, . . . , sk takvih da je

x1 = gs1
(x), x2 = gs2

(x1), . . . , xr−1 = gsk−1
(xk−2), y = gsk

(xk−1),

pa je samim tim y = gs(x), s = s1 + s2 + · · ·+ sk.

Neka je x0 proizvoǉna fiksirana taqka na Pc. Iz tranzitivnosti dejstva
imamo da je preslikavaǌe:

ρ : Rn−r → Pc, ρ(s) := gs(x0)

na. Pri preslikavaǌu ρ, konstantna vektorska poǉa (1, 0, . . . , 0), . . . , (0, 0, . . . , 1)
slikaju se redom u Hamiltonova vektorska poǉa X1, . . . , Xn−r.

Lako se proverava da je Γ = ρ−1(x0) podgrupa (izotropna podgrupa ele-
menta x0) koja ne zavisi od fiksiranog elementa x0. Kako je dejstvo i lokalno
slobodno, to je Γ je diskretan podskup od Rn−r, odnosno Γ je rexetka.

Neka je e1, . . . , ek baza od Γ data lemom 1. Dopunimo je vektorima ek+1, . . . ,
en−r do baze prostora Rn−r.

Posmatrajmo (n− r)-dimenzioni realni vektorski prostor W sa koordina-
tama (ϕ1, . . . , ϕk, α1, . . . , αn−r−k) u odnosu na bazu f1, . . . , fn−r, zajedno sa priro-
dnim preslikavaǌem

π : W −→ Tk ×Rn−r−k, π(ϕ, α) = (ϕ (mod 2π), α).

Definiximo linearni izomorfizam A : W → Rn−r sa A(fi) = ei, i = 1, . . . , n−r

kao i preslikavaǌe Ã : Tk ×Rn−r−k → Pc tako da slede²i dijagram komutira:

W
A−−−−→ Rn−r

π

y
yρ

Tk ×Rn−r−k Ã−−−−→ Pc.

Lako se proverava da je Ã dobro definisan difeomorfizam. Kako je Pc kompakt-
no, dobijamo k = n− r, tj. Pc je difeomorfno torusu Tn−r.

Korak 3. Bez umaǌena opxtosti, mo¼emo pretpostaviti je integral f1 jednak
Hamiltonijanu h. Izrazimo vektor (1, 0, . . . , 0) ∈ Rn−r u bazi e1, . . . , en−r:

(1, 0, . . . , 0) = ω1e1 + · · ·+ ωn−ren−r.

3 Levo (desno) dejstvo grupe (G, ∗) na skup M je dodeǉivaǌe preslikavaǌa gs skupa M svakom
elementu s ∈ G tako da je ge = IdM , gde je e neutral u G i gs ◦ gt = gs∗t (gs ◦ gt = gt∗s), s, t ∈ G.
Ukoliko je (G, ∗) komutativna grupa, tada se definicije levog i desnog dejstva poklapaju.
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Pri preslikavaǌu ρ, konstantnom vektorskom poǉu (1, 0, . . . , 0) odgovara Hamil-
tonovo vektorsko poǉe Xh = X1. Daǉe, iz definicije Ã dobijamo da je u ko-
ordinatama ϕ (mod 2π), vektorsko poǉe X1 konstantno i jednako (ω1, . . . , ωn−r).
Time smo dokazali linearizaciju (8) jednaqina (5).

Napomena 1. Ukoliko su vektorska poǉa X1, . . . , Xn−r navedena u dokazu
teoreme kompletna, tada se uslov kompaktnosti mnogostrukosti Pc mo¼e izuzeti.
Ako Pc nije kompaktno tada je ono difeomorfno sa Tk ×Rn−r−k (za neko k > 0)
i mogu se na²i koordinate (ϕ1, . . . , ϕk, α1, . . . , αn−r−k) na Tk×Rn−r−k, takve da
je dinamika sistema zadata linearnim jednaqinama ϕ̇1 = ω1, . . . , ϕ̇k = ωk, α̇1 =
β1, . . . , α̇n−r−k = βn−r−k, (ω, β = const).

3. Hopfovo raslojeǌe

Hopfovo raslojeǌe sfere S3 na kru¼nice je jedan od osnovnih netrivijalnih
primera raslojeǌa u geometriji i topologiji. Raslojeǌe ima prirodan opis
pomo²u sistema dva harmonijska oscilatora. Po±imo prvo od sistema

q̇1 = p1 =
∂h

∂p1
, q̇2 = p2 =

∂h

∂p2
, ṗ1 = −q1 =

∂h

∂q1
, ṗ2 = −ω2q2 =

∂h

∂q2
, (11)

gde je h = 1
2 (q2

1 + p2
1 + ω2q2

2 + p2
2). U uglovnim koordinatama (ϕ1, ϕ2)

q1 =
√

2c1 cos(ϕ1), p1 = −√2c1 sin(ϕ1), q2 =
√

2c2

ω
cos(ϕ2), p2 = −√2c2 sin(ϕ2)

(12)
na invarijantnim torusima f1 = c1, f2 = c2, jednaqine kretaǌa imaju oblik

ϕ̇1 = 1, ϕ̇2 = ω,

gde su integrali f1 = 1
2 (q2

1 + p2
1), f2 = 1

2 (ω2q2
2 + p2

2) redom energija prvog i dru-
gog oscilatora [Jo]. Ukoliko ω nije racionalan broj, tada su trajektorije na
invarijantnim torusima ravnomerno svuda guste [Jo]. To povlaqi da ne postoji
dopunski nezavisni integral kretaǌa i da sistem nije nekomutativno integra-
bilan. U suprotnom, ako ω ∈ Q, sve trajektorije sistema su periodiqne.

Od sada uzimamo vrednost parametra ω = 1 (sluqaj identiqnih oscilatora).
Tada su sve trajektorije 2π-periodiqne i sistem ima dopunski integral, koga
mo¼e predstavǉati proizvoǉna 2π-periodiqna funkcija razlike ϕ1 − ϕ2. Na
primer, kako je cos(ϕ1 − ϕ2) = cos(ϕ1) cos(ϕ2) + sin(ϕ1) sin(ϕ2) iz (12) dobijamo
tre²i integral oblika (q1q2 + p1p2)

√
f1f2. Poxto je

√
f1f2 tako±e integral,

mo¼emo uzeti integral:

m1 =
1
2
(q1q2 + p1p2).

Ve�baǌe 1. Neka je m2 = 1
2 (q2p1 − p2q1), m3 = 1

2 (f2 − f1). Dokazati:

{m1, f1} = {f2,m1} = m2, {f1, m2} = {m2, f2} = m1, {f1, f2} = 0,
(13)

{m1,m2} = m3, {m2,m3} = m1, {m3,m1} = m2. (14)
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Primetimo da integral m2 odgovara funkciji sin(ϕ1 − ϕ2) kao i da me±u
integralima va¼i funkcionalna relacija f1f2 = m2

3 + m2
4.

Sistem (11) zadovoǉava uslove teoreme 1 u odnosu na integrale h,m1,m2

(pored Hamiltonijana h, mo¼emo uzeti proizvoǉna dva nezavisna integrala).

Ve�baǌe 2. Dokazati da vektorski prostori kososimetriqnih 3 × 3
realnih matrica so(3) i kosohermitskih 2 × 2 kompleksnih matrica traga nula
(su(2)) (posmatranih kao realni vektorski prostor),

so(3) =








0 a b
−a 0 c
−b −c 0


 | a, b, c ∈ R



 , su(2) =

{(
ia z
−z̄ −ia

)
| a ∈ R, z ∈ C

}
,

qine Lijeve algebre u odnosu na uobiqajen komutator [·, ·] matrica. Pokaza-
ti izomorfizam Lijevih algebri (so(3), [·, ·]), (su(2), [·, ·]), Euklidkog vektorskog
prostora sa vektorskim mno¼eǌem (R3,×) kao i Lijeve algebre generisane funk-
cijama m1,m2,m3 sa Puasonovim zagradama (14).

Fiksirani nivo energije h = E > 0 zadaje sferu S3 polupreqnika
√

2E u
R4. Trajektorije sistema na S3 zadaju raslojavaǌe sfere na kru¼nice – Hopfo-
vo raslojeǌe. Kvocijentni prostor S3/S1 je dvodimenziona sfera S2. Preslika-
vaǌe π : S3 −→ S2, takvo da su inverzne slike π−1(x), x ∈ S2 upravo kru¼nice
(trajektorije oscilatora) mo¼e se eksplicitno opisati na slede²i naqin:

π(q1, q2, p1, p2) = (m1, m2, m3) =
1
2

(
q1q2 + p1p2, q2p1 − p2q1,

1
2 (q2

2 + p2
2 − q2

1 − p2
1)

)
.

Naime, kako je

m2
1 + m2

2 + m2
3 =

1
4
(4f1f2 + f2

1 − 2f1f2 + f2
2 ) =

1
4
(f1 + f2)2 =

1
4
h2,

taqka π(q1, q2, p1, p2) pripada sferi S2 = {x ∈ R3 | x2
1 + x2

2 + x2
3 = 1

4E2 }, dok iz
nezavisnosti integrala m1,m2,m3 dobijamo da su inverzne slike taqaka sfere
S2 trajektorije sistema (11).

Pored raslojavaǌa sfere S3 na kru¼nice, imamo i (nejedinstveno) raslo-
javaǌe na toruse zadate kao povrxi nivoa Hamiltonijana h i jox jednog inte-
grala. Posmatrajmo integral m3. Na sferi S3, funkcija m3 uzima vrednosti
u intervalu [−E/2, E/2], kojima odgovara razbijaǌe sfere S2 na antipodalne
taqke (severni i ju¼ni pol) i familiju kru¼nica (paralele):

S2 = {(0, 0,−E/2)}
⋃

−E
2 <c< E

2

S1
c ∪ {(0, 0, E/2)}, S1

c = S2 ∩ {x3 = c}.

Pri preslikavaǌu π, inverzna slika kru¼nice S1
c je torus Tc = π−1(S1

c ) zadat
jednaqinama: h = f1 + f2 = E, m3 = 1

2 (f2 − f1) = c, dok su inverzne slike
antipodalnih taqaka (0, 0,−E/2) i (0, 0, E/2), redom kru¼nice,

γ1 : f1 = E, f2 = 0 i γ2 : f1 = 0, f2 = E
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na kojima su funkcije h i m3 zavisne. Dakle imamo razbijaǌe sfere S3 na dve
kru¼nice i familiju torusa: S3 = γ1 ∪−E

2 <c< E
2

Tc ∪ γ2.

Slika 3. Hopfovo raslojeǌe

Ta slika nam poma¼e da vizualizujemo Hopfovo raslojavaǌe. Posmatrajmo
sferu S3 kao prostor R3 sa dodatom beskonaqo dalekom taqkom ∞ , pri qemu je
kru¼nica γ1 prava u R3 (koja sadr¼i i taqku∞), dok je γ2 kruznica koja se dobija
rotacijom proizvoǉne taqke e prostora oko γ1. Torusi se dobijaju rotacijom
oko γ1 kru¼nica koje le¼e u ravni (γ1, e) i sadr¼e u svojoj unutraxosti taqku e
(pogledati sliku).

Odgovaraju²e dodatno raslojavaǌe torusa na kru¼nice koje obilaze jedanput
toruse po meridijanima i jedanput po paralelama, daje Hopfovo raslojeǌe.

Ve�baǌe 3. Proizvoǉne dve kru¼nice iz raslojeǌa me±usobno su me±u-
sobno ulanqane (ne mogu se ”razdvojiti” bez presecaǌa). To je oqigledno za γ1 i
γ2, kao i proizvoǉnu kru¼nicu sa torusa Tc i γi. Pokuxajte doqarati me±usobnu
ulanqanost kru¼nica na torusima.

LITERATURA
[AR] V. I. Arnol~d, Matematiqeskie metodi klassiqesko� mehaniki, Moskva, Nauka 1974. Pre-

vod na engleski: V.I. Arnol’d, Mathematical Methods of Classical Mechanics, Springer-Verlag,
1978.
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