
NASTAVA RAQUNARSTVA

Stanka Matkovi�, Mijodrag �urixi�

MALA XKOLA OBJEKTNO ORIJENTISANOG
PROGRAMIRAǋA U PROGRAMSKOM JEZIKU C#

Drugi deo

Operatori

Kao xto smo naglasili u prethodnom qlanku, metodom opisujemo ponaxaǌe
objekta u odre±enoj situaciji i pod odre±enim uslovima, odre±ujemo nove vre-
dnosti na osnovu osobina koje objekat poseduje ali i opisujemo odre±ene akcije
me±u objektima koje za rezultat imaju ili novi objekat ili neku vrednost.

Lako se mo¼e napraviti analogija izme±u ovakvih akcija i matematiqkih
operacija koje definixemo kao preslikavaǌe skupa ure±enih n-torki u neki skup
objekata ili vrednosti. U skladu sa tim u ve²ini objektno orijentisanih pro-
gramskih jezika postoji mogu²nost definisaǌa operatora, pre svega da bi se xto
jednostavnije pozivali i xto efektnije koristili takvi metodi.

U C# ne mo¼emo definisati nove operatore ali u svakoj klasi mo¼emo
predefinisati veliki broj postoje²ih. Predefinisaǌem operatora u klasi do-
deǉujemo operatoru novo znaqeǌe koje se primeǌuje kada se operator poziva za
objekte te klase. Ponaxaǌe istog operatora za druge tipove objekata se ne meǌa.
U tabeli koja sledi navedeni su operatori u C# koji se najqex²e predefinixu.

Unitarni operatori Binarni operatori

+, −, !, ∼, ++, −− +, −, ∗, /, %, &, |, ,̂ <<, >>

==, ! =, <, >, <=, >=

Predefinisaǌem operatora ne mo¼emo promeniti arnost (broj operanada),
prioritet i asocijativnost (grupisaǌe) operatora.

U opxtem sluqaju operator se zapisuje na slede²i naqin:

public static <povratni tip> operator <operacijski znak>(<lista parametara>)

<telo operatora>

Slu¼bena req static oznaqava da je operator statiqki qlan klase, xto
znaqi da nije kao ostali (,,ne statik“) qlanovi vezan za objekat this ve² za samu
klasu. Kada je neki atribut klase static onda postoji samo jedna kopija tog

32 S. Matkovi², M. §urixi²

atributa koju dele svi objekti te klase. Kada je metod klase static on nije vezan
za konkretni objekat klase, odnosno ne mo¼e koristiti this. Statiqke metode se
koriste da izraqunaju odre±ene vrednosti a ne da promene staǌe objekta (Math
klasa u C# sadr¼i statiqke metode Sqrt, Sin, Cos, . . .). Statiqke qlanove
klase mo¼emo koristiti bez kreiraǌa objekta.

Operatori su static jer iako se primeǌuju na objektima klase nisu ǌihov
sastavni deo niti ǌihova funkcionalnost ve² su funkcionalnost klase. U nekim,
starijim programskim jezicima operatori se vezuju za objekte ali je naqin na
koji su operatori realizovani u C# praktiqniji i prirodniji.

Kod operatora <povratni tip> mo¼e biti bilo koji tip podataka definisan
u C#, sistemski ili od strane korisnika. ǋime definixemo tip rezultata
operacije realizovane operatorom. Povratni tip ne mo¼e biti void jer operator
mora imati povratnu vrednost.

Slu¼bena req operator zajedno sa operacijskim znakom zapravo predstavǉa
ime metode. Skup mogu²ih vrednosti za <operacijski znak> dat je prethodno
navedenom tabelom. Ukoliko izabrani operacijski znak predstavǉa unarnu ope-
raciju, <lista parametara> sadr¼i samo jedan parametar a ukoliko predstavǉa
binarnu operaciju, <lista parametara> sadr¼i dva parametra me±usobno odvo-
jena zarezom. U svakoj <lista parametara> bar jedan od parametara mora biti
objekat klase qiji je operator qlan.

U klasi Razlomak mo¼emo definisati vixe operatora. Navodimo ispravna
zaglavǉa nekih od ǌih:

• public static Razlomak operator +(Razlomak a, Razlomak b)

operator za odre±ivaǌe zbira razlomaka a i b

• public static Razlomak operator *(Razlomak a, Razlomak b)

operator za odre±ivaǌe proizvoda razlomaka a i b

• public static Razlomak operator +(Razlomak a, int b)

operator za odre±ivaǌe zbira razlomka a i celog broja b

• public static Razlomak operator -(Razlomak a)

operator za odre±ivaǌe razlomka suprotnog znaka od razlomka a

• public static Razlomak operator ~(Razlomak a)

operator za odre±ivaǌe reciproqne vrednosti razlomka a

• public static Razlomak operator -(Razlomak a, Razlomak b)

operator za odre±ivaǌe razlike razlomaka a i b

• public static bool operator >(Razlomak a, Razlomak b)

operator za proveru da li je razlomak a ve²i od razlomka b

U telu operatora mora postojati jedna ili vixe komandi return <izraz>
gde je <izraz> proizvoǉan izraz tipa <povratni tip>.

Mala xkola objektno orijentisanog programiraǌa 33

Unarni operatori se pozivaju prefiksno, <operacijski znak><objekat
klase>. Operatori ++ i −− imaju i postfiksnu notaciju pa se mogu pozi-
vati i postfiksno, <objekat klase><operacijski znak>. Binarni operatori
se pozivaju infiksno <stvarni parametar><operacijski znak><stvarni pa-
rametar>.

U slede²em segmentu komandi C# navodimo ispravne pozive operatora klase
Razlomak qija su zaglavǉa prethodno navedena.

Razlomak x = new Razlomak(3, 4);

Razlomak y = new Razlomak(-12, 5);

Razlomak z;

z = x + y;

z = x + 5;

z = ~x;

z = -y;

if (x > y)

z = x y*z + 3;

else

x += y;

Predefinisaǌem binarnih operatora +,−, ∗, /, %, &, |,̂ , <<,>> automatski
su predefinisani i operator + =,− =, ∗ =, / =,% =,& =, | =,̂ =, <<=, >>=.

Operatori za pore±eǌe moraju biti predefinisani u paru. Ako predefi-
nixemo operator == onda moramo predefinisati i operator ! =. Sliqno i za
operatore <, > i <=, >=.

Klasa Razlomak

Upotrebu operatora ilustrujemo na primeru klase Razlomak, jer su opera-
cije koje se izvode nad skupom razlomaka (racionalnih brojeva) svima bliske a
nijedan programski jezik nema ugra±en tip podataka koji predstavǉa razlomak.

Definximo binarni operator + kojim realizujemo operaciju sabiraǌa dva
Razlomka. Rezultat je, u skladu sa pravilima sabiraǌa racionalnih brojeva,
tako±e Razlomak.

public static Razlomak operator +(Razlomak a, Razlomak b)

{
Razlomak r = new Razlomak();

r.imenilac = a.imenilac * b.imenilac;

r.brojilac = a.brojilac * b.imenilac + b.brojilac * a.imenilac;

r.skrati();

return r;

}

Operacije ne meǌaju operande ve² kreiraju rezultat u zavisnosti od vre-
dnosti operanada. Zato na poqetku metode kreiramo novi Razlomak r koji ²e

34 S. Matkovi², M. §urixi²

predstavǉati rezultat, a ǌegove atribute postavǉamo u skladu sa matematiqkim
pravilima sabiraǌa razlomaka. Radi jednostavnije realizacije pri sabiraǌu
ne tra¼imo NZS imenilaca ve² operande dovodimo na zajedniqki imenilac ko-
ji predstavǉa proizvod polaznih imenilaca, pa izvrximo potrebno sabiraǌe.
Zatim Razlomak r dovodimo u neskrativ oblik, deǉeǌem brojioca i imenioca
ǌihovim NZD, xto je realizovano metodom skrati.

Ako u klasi Razlomak napixemo konstruktor koji na osnovu datog brojioca i
imenioca inicijalizuje atribute objekta tako da on predstavǉa pravi razlomak
(brojilac i imenilac uzajamno prosti brojevi) operator + mo¼emo definisati
na slede²i naqin.

public static Razlomak operator +(Razlomak a, Razlomak b)

{
return new

Razlomak(a.brojilac * b.imenilac + b.brojilac * a.imenilac,

a.imenilac * b.imenilac);

}

Operatori kao i sve druge metode mogu se preopteretiti, tako da mo¼emo
pisati vixe operatora istog imena sa razliqitom listom parametara. Pretho-
dno definisanim operatorom realizovana je operacija sabiraǌa dva razlomka.
Qesto je potrebno i sabiraǌe objekta klase Razlomak i celog broja, pa mo¼emo
definisati operator + sa parametrima redom Razlomak, int kao i operator +
sa parametrima redom int, Razlomak. Prilikom realizacije metoda operator
+(Razlomak a, int b) kreiramo novi razlomak b/1 od celog broja b, a zatim
korix²eǌem operatora + za sabiraǌe dva razlomka saberemo taj razlomak i
razlomak a.

public static Razlomak operator +(Razlomak a, int b)

{
return a + new Razlomak(b,1);

}

Korix²eǌem prethodno definisanog operatora + mo¼emo definisati i sa-
biraǌe celog broja i objekta klase Razlomak na slede²i naqin.

public static Razlomak operator +(int b,Razlomak a)

{
return a + b;

}

Sliqno mo¼emo definisati i ostale operatore za rad sa racionalnim bro-
jevima, oduzimaǌe, mno¼eǌe, deǉeǌe. I te operatore moramo preopteretiti na
sliqan naqin ako ¼elimo da omogu²imo izvo±eǌe operacija izme±u razlomaka i
celih brojeva.

Deǉeǌe dva razlomka mo¼emo realizovati kao mno¼eǌe razlomka ǌegovom
reciproqnom vrednox²u. Zato je potrebno definisati operator za odre±ivaǌe
reciproqne vrednosti, to je unarni operator koji jednostavno realizujemo:

Mala xkola objektno orijentisanog programiraǌa 35

public static Razlomak operator ~(Razlomak a)

{
return new Razlomak(a.imenilac, a.brojilac);

}

Pomo²u operatora mo¼emo omogu²iti i konverziju objekata klase (tipa po-
dataka) koju definixemo u objekte druge klase ili u podatke osnovnog tipa kao
i obrnuto.

Konverzija se definixe kao unarni operator. Ime tog operatora je ime tipa
u koji se vrxi konverzija parametra operatora. Parametar operatora ili tip
u koji se vrxi konverzija, ali ne oba, moraju biti iz klase u kojoj definixemo
konverziju.

Konverzija mo¼e biti implicitna ili eksplicitna. Prilikom raqunaǌa
vrednosti izraza da bi svi podaci u izrazu bili istog tipa vrxi se automatski
ǌihova implicitna konverzija (bez eksplicitnog navo±eǌe od strane programe-
ra). Implicitnom konverzijom ne dolazi do gubitka informacija pa se mo¼e
bezbedno pozivati i bez znaǌa programera.

Eksplicitnu konverziju programer zahteva dodatnim kodom, korix²eǌem
operatora cast. Prilikom eksplicitne konverzije mo¼e do²i do gubitka in-
formacija.

Zaglavǉa implicitnog i eksplicitnog operatora konverzije u C# izgledaju
ovako:

public static implicit operator TipRezultata(TipParametra parametar)

public static explicit operator TipRezultata(TipParametra parametar)

Svaki ceo broj mo¼emo tumaqiti kao racionalan broj pa je mogu²e defini-
sati implicitnu konverziju iz podatka tipa int u objekat klase Razlomak.

public static implicit operator Razlomak(int i)

{
return new Razlomak(i,1);

}

S druge strane, za svaki razlomak mo¼emo odrediti ǌegovu taqnu ili pri-
bli¼nu decimalnu vrednost, xto znaqqi da pri konverziji iz razlomka u realan
broj mo¼e do²i do gubitka informacija. Zato je prirodno definisati ekspli-
citnu konverziju iz klase Razlomak u osnovni tip double.

public static explicit operator double(Razlomak r)

{
return (double)r.brojilac / r.imenilac;

}

Definisaǌem operatora implicitne konverzije gubi se potreba za preopte-
re²enim operatorima kojima omogu²avamo izvo±eǌe operacija izme±u objekata
klase Razlomak i celih brojeva. U slede²em segmentu naredbi C# prikazana je

36 S. Matkovi², M. §urixi²

upotreba implicitnog i eksplicitnog operatora konverzije. U naredbi c = a +
5 prilikom raqunaǌa vrednosti izraza ceo broj 5 se automatski (implicitnom
konverzijom) prevodi u razlomak pa se izvrxava operacija sabiraǌa izme±u dva
razlomka. U naredbi x = (double)a + 5 korix²eǌem cast operatora (double)
Razlomak a se konvertuje eksplicitnom konverzijom u realan broj pa se vrxi
operacija sabiraǌa izme±u realnih brojeva.

Razlomak a=new Razlomak(3,4), b=new Razlomak(textBox1.Text), c;

double x;

c = a + 5;

x = (double)a + 5;

b = a / 4 - 3;

x = (double)(a + b);

Radi boǉeg sagledavaǌa svih komponenti klase Razlomak navodimo celu kla-
su.

public class Razlomak

{
#region Atributi

int imenilac;

int brojilac;

endregion

#region Konstruktori

public Razlomak()

{
imenilac = 1;

brojilac = 0;

}
public Razlomak(int br)

{
brojilac = br;

imenilac = 1;

}
public Razlomak(int br, int im)

{
if (im = = 0)

throw new Exception("Greska: imenilac0");

brojilac = br;

imenilac = im;

if (imenilac < 0)

{
brojilac=-brojilac;

imenilac=-imenilac;

}
skrati();

Mala xkola objektno orijentisanog programiraǌa 37

}
public Razlomak(string s)

{
int p = s.IndexOf(’/’);

if (p != -1)

{
brojilac = Convert.ToInt32(s.Substring(0, p));

imenilac = Convert.ToInt32(s.Substring(p + 1));

if (imenilac = = 0) throw new Exception("Greska: imenilac 0");

this.skrati();

}
else

{
brojilac = Convert.ToInt32(s);

imenilac = 1;

}
}
private static int nzd(int a, int b)

{
if (b = = 0)

return a;

return

nzd(b, a % b);

}
private void skrati()

{
int p = nzd(Math.Abs(brojilac), Math.Abs(imenilac));

imenilac /= p;

brojilac /= p;

}
#endregion

#region Operatori

public static Razlomak operator +(Razlomak a, Razlomak b)

{
return new Razlomak(a.brojilac * b.imenilac + b.brojilac * a.imenilac, a.imenilac

* b.imenilac);

}
public static Razlomak operator -(Razlomak a)

{
return new Razlomak(-a.brojilac, a.imenilac);

}
public static Razlomak operator -(Razlomak a, Razlomak b)

{
return a + (-b);

}

38 S. Matkovi², M. §urixi²

public static Razlomak operator *(Razlomak a, Razlomak b)

{
return new Razlomak(a.brojilac * b.brojilac, a.imenilac * b.imenilac);

}
public static Razlomak operator (Razlomak a)

{
return new Razlomak(a.imenilac, a.brojilac);

}
public static Razlomak operator /(Razlomak a, Razlomak b)

{
return a * b;

}
public static explicit operator double(Razlomak r)

{
return (double)r.brojilac / r.imenilac;

}
public static implicit operator Razlomak(int i)

{
return new Razlomak(i, 1);

}
public static bool operator >(Razlomak A, Razlomak B)

{
return A.brojilac * B.imenilac > B.brojilac * A.imenilac;

}
public static bool operator <(Razlomak A, Razlomak B)

{
return A.brojilac * B.imenilac < B.brojilac * A.imenilac;

}
#endregion

public string UString()

{
if (brojilac = = 0)

return "0";

else

if (imenilac = = 1)

return brojilac + "";

else

return brojilac + "/" + imenilac;

}
}

Klase Vreme, Datum, VremenskiTrenutak

Neka je klasa Vreme definisana kao u prethodnom qlanku (jedan atribut,
sekunde, odgovaraju²i konstruktori, svojstva, . . .). Ako posmatramo objekat te

Mala xkola objektno orijentisanog programiraǌa 39

klase A koji predstavǉa vreme trajaǌa filma i objekat iste klase B koji pred-
stavǉa vreme trajaǌa filmskog ¼urnala i reklama, sabiraǌem ta dva vremena
se mo¼e dobiti vreme trajaǌa bioskopske projekcije, C. Ako bismo napisali
operator + za klasu Vreme mogli bismo vreme C da odredimo slede²im pozivom
tog operatora:

C = A + B;

Operator sabiraǌa mo¼emo definisati na slede²i naqin:

public static Vreme operator+(Vreme A, Vreme B)

{
return new Vreme(A.sekunde+B.sekunde);

}

Na sliqan naqin mo¼emo definisati i operatore:

• public static Vreme operator +(Vreme a,int b)

operator za odre±ivaǌe zbira vremena a i broja sekundi b

• public static Vreme operator -(Vreme a, Vreme b)

operator za odre±ivaǌe apsolutne razlike vremena a i b

• public static bool operator >(Vreme a, Vreme b)

operator za proveru da li vreme a traje du¼e od vremena b

• public static bool operator <(Vreme a, Vreme b)

operator za proveru da li vreme a traje kra²e od vremena b

Klasu Datum mo¼emo realizovati sa tri celobrojna atributa (dan, mesec,
godina) sa odgovaraju²im svojstvima i konstruktorima:

public class Datum

{
#region AtributiISvojstva

private int dan, mesec, godina;

public int Dan

{
get { return dan; }
}

public int Mesec

{
get { return mesec; }

}

public int Godina

{
get { return godina; }

}

#endregion

40 S. Matkovi², M. §urixi²

#region Konstruktori

public Datum()

{
dan = 1;

mesec = 1;

godina = 2010;

}

public Datum(Datum D)

{
godina = D.godina;

mesec = D.mesec;

dan = D.dan;

}

public Datum(string s)

{
dan = Convert.ToInt32(s.Substring(0,s.IndexOf(’.’)));

s=s.Remove(0, s.IndexOf(’.’) + 1);

mesec = Convert.ToInt32(s.Substring(0, s.IndexOf(’.’)));

godina = Convert.ToInt32(s.Substring(s.IndexOf(’.’) + 1));

}

public Datum(int d, int m, int g)

{
godina = g;

mesec = m;

dan = d;

}
#endregion

. . .

}

U ovako realizovanoj klasi mo¼emo definisati raznovrsne operatore. Je-
dan od interesantnijih operatora je unarni operator koji obezbe±uje prelazak
u slede²i dan, odnosno odre±ivaǌe sutraxǌeg datuma. Realizova²emo ga kao
operator++:

public static Datum operator ++(Datum D)

{
int d = D.dan + 1;

int m = D.mesec;

int g = D.godina;

// statiqkim metodom brDana(m,g)

// odre±ujemo broj dana u mesecu m godine g

if (d > brDana(m, g))

{

Mala xkola objektno orijentisanog programiraǌa 41

d = 1;

m++;

if (m == 13)

{
m = 1;

g++;

}
}
return new Datum(d, m, g);

}

Ovaj operator predefinixe poznati operator uve²avaǌa za 1 iz programskog
jezika C pa je i ǌegovo korix²eǌe u skladu sa tim. Naime, ovaj operator kao i
ǌemu srodni operator -- mo¼e se pozivati i u prefiksnoj i u postfiksnoj nota-
ciji. On pri svakom pozivu meǌa vrednost parametra dodeǉuju²i mu povratnu
vrednost ali je vrednost samog izraza <parametar>++ jednaka staroj vrednosti
parametra, dok je vrednost izraza ++<parametar> jednaka novoj vrednosti.

Mo¼emo primetiti da u klasi Datum nema smisla definisati operator kojim
se sabiraju dva objekta klase Datum ali se mo¼e definisati operator kojim se
na objekat klase Datum mo¼e dodati ceo broj dana. Tako±e, od datuma mo¼emo
oduzimati izvestan ceo broj dana ali se mo¼e odrediti i broj dana izme±u dva
datuma.

• public static Datum operator +(Datum a,int b)

• public static Datrum operator -(Datrum a, int b)

• public static int operator -(Datum a, Datum b)

Realizaciju ovih operatora prepuxtamo qitaocu.

Smisleno je i predefinisati operatore pore±eǌa dva datuma kako bi se
utvrdilo koji je datum pre a koji posle (operatori < i >) kao i da li su dva
datuma ista, odnosno razliqita (== i !=). Predefinisaǌem operatora == gubimo
ǌegovo uobiqajeno znaqeǌe pore±eǌa referenci dva objekta i definixemo novo.
U klasi Datum operatore == i != mo¼emo definisati tako da porede datume po
vrednosti atributa.

public static bool operator==(Datum a, Datum b)

{
return a.godina==b.godina && a.mesec==b.mesec && a.dan==b.dan;

}
public static bool operator!=(Datum a, Datum b)

{
return !(a==b);

}

Kada govorimo o bilo kom doga±aju me±u najznaqajnijim informacijama su
informacije koje govore o tome kada se taj doga±aj odvija. Kako bismo takve
informacije precizno zapisali neophodno je da imamo podatke i o datumu i o

42 S. Matkovi², M. §urixi²

vremenu. Mo¼emo definisati klasu VremenskiTrenutak qije objekte opisuju
atributi D, tipa Datum i V , tipa Vreme. Ova klasa je naroqito interesantna
zbog operatora koje mo¼emo realizovati u ǌoj.

• public static VremenskiTrenutak operator +(VremenskiTrenutak a,
Vreme b)

odre±ivaǌe trenutka koji je za vreme b posle trenutka a

• public static Vreme operator -(VremenskiTrenutak a,
VremenskiTrenutak b)

odre±ivaǌe vremena izme±u dva trenutka

• public static VremenskiTrenutak operator -(VremenskiTrenutak a,
Vreme b)

odre±ivaǌe trenutka koji je za vreme b pre trenutka a

• public static bool operator <(VremenskiTrenutak a,
VremenskiTrenutak b)

• public static bool operator >(VremenskiTrenutak a,
VremenskiTrenutak b)

• public static bool operator ==(VremenskiTrenutak a,
VremenskiTrenutak b)

• public static bool operator !=(VremenskiTrenutak a,
VremenskiTrenutak b)

Klase Vreme, Datum i VremenskiTrenutak su vrlo upotrebǉive u velikom
broju aplikacija ali i kao atributi brojnih slo¼enijih klasa. Recimo da je
definisana klasa Manifestacija koja za atribute ima naziv, mesto odr¼avaǌa,
poqetak (tipa VremenskiTrenutak) i du¼inu trajaǌa (tipa Vreme). Neka je zadat
raspored korisnika sa vremenom boravka u razliqitim mestima. Mo¼emo kre-
irati aplikaciju kojom se na osnovu dostupnih informacija mo¼e predlo¼iti
korisniku koje sve manifestacije mo¼e da poseti, tako da ne poremeti svoj ras-
pored. Pri kreiraǌu takve aplikacije definisani operatori bi doprineli je-
dnostavnosti realizacije.

Predla¼emo qitaocu da u potpunosti realizuje ove klase sa svim navedenim,
ali i nenavedenim, a smislenim operatorima kao i xto vixe aplikacija u kojima
se korisno mogu upotrebiti.

Klasa Polinom

Ilustrujmo definisaǌe operatora u klasi koja kao atribut ima niz. Posma-
trajmo klasu za rad sa polinomima. Polinom mo¼emo opisati stepenom i nizom
koeficijenata, ili nizom monoma kod kojih su koeficijenti razliqiti od nule.
Radi jednostavnije realizacije u navedenoj klasi polinom je opisan stepenom (n)
i nizom koeficijenata (k) tako da i-ti element niza k (k[i]) predstavǉa koefi-
cijent uz i-ti stepen polinoma. U klasi Polinom mo¼emo definisati operatore
(+, -, *, /) za izvo±eǌe osnovnih aritmetiqkih operacija nad objektima klase.

Mala xkola objektno orijentisanog programiraǌa 43

public class Polinom

{
float[] k;// niz koeficijenata polinoma

int n; // stepen polinoma

// podrazumevani konstruktor za formiraǌe nula polinoma

public Polinom()

{
n = 0;

k = new float[1];

k[0] = 0;

}
// konstruktor kojim se formira polinom stepena n

// sa koeficijentima jednakim 0

public Polinom(int n)

{
this.n = n;

k = new float[n+1];

for(int i=0;i<=n;i++) k[i] = 0;

}
// privatni indekser uveden radi lakseg pristupa koeficijentima polinoma

private float this[int i]

{
get { return k[i]; }
set { k[i] = value; }

}
public static Polinom operator +(Polinom a, Polinom b)

{
Polinom c = new Polinom(Math.Max(a.n, b.n));

for (int i = 0; i <= c.n; i++)

{
//c.k[i] = 0; ovo je ve² ura±eno konstruktorom

if (i <= a.n) c[i] += a[i]; // c.k[i] += a.k[i];

if (i <= b.n) c[i] += b[i];

}
int n1=c.n;

while (n1 > 0 && c[n1] = = 0) n1--;

c.n = n1;

return c;

}
public static Polinom operator *(Polinom a, Polinom b)

{
Polinom c = new Polinom(a.n + b.n);

for (int i = 0; i <= a.n; i++)

for (int j = 0; j <= b.n; j++)

c[i + j] += a[i] * b[j];

44 S. Matkovi², M. §urixi²

return c;

}
}

Navodimo nekoliko interesantnih klasa na kojima mo¼emo ilustrovati ope-
ratore:

• klasa za rad sa kompleksnim brojevima (obezbediti i grafiqki prikaz objek-
ta klase). U okviru te klase mogu se realizovati operatori za sabiraǌe, od-
uzimaǌe, mno¼eǌe, deǉeǌe dva kompleksna broja, odre±ivaǌe konjugovanog
kompleksnog broja (unarni operator npr.)̃, odre±ivaǌe modula kompleksnog
broja, operator implicitne konverzije iz realnog u kompleksni broj.

• klasa za rad sa vektorima (obezbediti i grafiqki prikaz objekata klase)

• klasa kojom realizujemo aritmetiku velikih brojeva (brojeva sa proizvoǉno
mnogo cifara). Mogu se postepeno razvijati klase za rad sa velikim bro-
jevima polaze²i od prirodnih brojeva, zatim razvoj klase za rad sa celim
brojevima i na kraju sa velikim realnim brojevima. Veliki ceo broj mo¼emo
opisati znakom i nizom cifara (znak i apsolutna vrednost broja), a mo¼emo
i nizom cifara koji predstavǉa zapis broja u potpunom komplementu osnove
10. U ovim klasama prirodno je realizovati sve aritmetiqke operatore kao
i operatore pore±eǌa.

• klasa za rad sa skupovima (realizovati operatore unija, presek, razlika).

Matematiqka gimnazija, Kraǉice Natalije 37, Beograd

