
NASTAVA RAQUNARSTVA

Stanka Matkovi�, Mijodrag �urixi�

MALA XKOLA OBJEKTNO ORIJENTISANOG
PROGRAMIRAǋA U PROGRAMSKOM JEZIKU C#

Tre�i deo

Nasle�ivaǌe – prvi deo

Nasle±ivaǌe je jox jedna va¼na osobina objektno orijentisanih programskih
jezika. Ona je posledica generalizacije kao metoda za modelovaǌe objekata.

Setimo se primera nastavnog procesa iz prvog dela ,,Male xkole OOP u
programskom jeziku C#“. U nastavnom procesu uqestvuju uqenici, profesori,
psiholog, direktor, . . . Svi oni imaju neke zajedniqke karakteristike ali i svo-
je specifiqnosti. Svi uqesnici u nastavnom procesu imaju svoje ime, prezime,
datum i mesto ro±eǌa, adresu stanovaǌa, . . . Generalizacijom dolazimo do klase
(nazovimo je Osoba) koja objediǌuje zajedniqke osobine i zajedniqke funkcional-
nosti svih posebnih grupa koje uqestvuju u nastavnom procesu.

Svaka grupa ima i svoje specifiqne osobine, kao i specifiqno ponaxaǌe u
nastavnom procesu. Za uqenika su, pored karakteristika opisanih klasom Osoba,
va¼ne i informacije o razredu koji poha±a, o predmetima koje sluxa, o rezulta-
tima koje posti¼e ali i akcije koje izvodi u nastavnom procesu (uqi lekciju, radi
pismeni zadatak, odgovara, . . .). Sliqno, za profesora mo¼emo uoqiti niz doda-
tnih karakteristika (predmete koje predaje, godine sta¼a, platni razred, . . .)
kao i niz specifiqnih funkcionalnosti u nastavnom procesu (predaje lekciju,
oceǌuje, . . .). Operaciju izvo±eǌa posebnih klasa iz opxte (generalizovane)
klase zovemo specijalizacija.

Klase dobijene specijalizacijom, osim xto nasle±uju sve qlanove (atribute
i metode) polazne klase, definixu i nove, specifiqne qlanove. Polaznu klasu
zovemo osnovna klasa (roditeǉska klasa, nadklasa), a klasu koja je nasle±uje
zovemo izvedena klasa (podklasa).

U izvedenoj klasi definixemo samo atribute i metode specifiqne za tu kla-
su (eventualno predefinixemo metode osnovne klase) ali ǌeni objekti nasle±uju
i sve qlanove osnovne klase. Izvedena klasa proxiruje, a u nekim sluqajevima
i precizira osnovnu klasu.

U definiciji izvedene klase posle navo±eǌa imena klase navodimo ‘:’ a
zatim sledi ime osnovne klase iz koje je izvedena.

Mala xkola objektno orijentisanog programiraǌa 43

class <imeIzvedeneKlase>:<imeOsnovneKlase>

{
opis / definicija članova klase

}

U programskom jeziku C# klasa mo¼e naslediti samo jednu osnovnu klasu,
odnosno ne mo¼e nastati kao specijalizacija dve ili vixe klasa. Tako±e, izvede-
na klasa ne mo¼e naslediti klasu koja sadr¼i modifikator sealed. Ako ¼elimo
da definixemo klasu iz koje se ne mogu izvoditi druge klase modifikator sealed
navodimo u zaglavǉu klase ispred slu¼bene reqi class.

Va¼no je napomenuti da u izvedenoj klasi, bez obzira xto nasle±uje sve qla-
nove osnovne klase, ne mo¼emo pristupiti privatnim qlanovima osnovne klase.
Da se ne bi naruxila enkapsulacija atributi osnovne klase ne treba da budu
javni a ako su privatni onda im se ne mo¼e pristupiti iz izvedene klase. Zato
postoji i tre²i nivo pristupa qlanovima klase – zaxti²eni (engl. protected).
Zaxti²eni qlanovi klase dostupni su u klasi u kojoj su definisani i u svim
klasama izvedenim iz te klase, a izvan ǌih nisu. Prema tome, iz izvedene kla-
se mo¼e se pristupiti javnim i zaxti²enim qlanovima osnovne klase, ali ne i
privatnim.

Da bi bio kreiran objekat izvedene klase mora se prvo kreirati ǌegov osnov-
ni, bazni deo sa atributima definisanim u osnovnoj klasi. Za kreiraǌe objekta
osnovne klase zadu¼en je konstruktor osnovne klase. Zato se u konstruktoru izve-
dene klase implicitno (automatski) poziva konstruktor bez argumenata osnovne
klase osim ako programer eksplicitno ne navede koji konstruktor osnovne klase
poziva prilikom kreiraǌa objekta. Poziv konstruktora osnovne klase programer
realizuje tako xto posle potpisa konstruktora izvedene klase navede dve taqke
(‘:’) a zatim slu¼benu req base i u zagradama redom parametre konstruktora
osnovne klase kojeg pozivamo.

public class Osnovna {
//

public Osnovna()

{
//

}
public Osnovna(int x)

{
//

}
//...

}
public class Izvedena:Osnovna

{
//

public Izvedena()

44 S. Matkovi², M. §urixi²

{
//....

}
public Izvedena(int a,int s):base(a)

{
// ...

}
//...

}

Izvedena klasa je nasle±ivaǌem dobila sve atribute i metode osnovne klase
pa objekat izvedene klase sadr¼i sve qlanove kao i objekat osnovne klase. Zato se
objekat izvedene klase, bez eksplicitne konverzije, mo¼e dodeliti promenǉivoj
osnovne klase. Obrnuto nije dozvoǉeno jer objekat osnovne klase ne sadr¼i sve
elemente izvedene klase. Va¼no je ista²i da preko promenǉive osnovne klase
kojoj smo dodelili objekat izvedene klase mo¼emo pozivati samo qlanove osnovne
klase.

Ako su A i B promenǉive, redom osnovne i izvedene klase, dozvoǉena je
dodela A = B. Posle te dodele preko promenǉive A mo¼emo pozivati samo
qlanove osnovne klase. Nije dozvoǉena dodela B = A jer je A promenǉiva
osnovne klase (sadr¼i samo qlanove osnovne klase) pa specifiqni qlanovi koje bi
trebalo da ima objekat izvedene klase, B, ne mogu biti definisani tom dodelom.

U izvedenoj klasi mo¼emo, osim potpuno novih metoda, definisati i metode
koje po imenu, povratnom tipu i po argumentima (po tipu, broju i redosledu
argumenata) odgovaraju metodima osnovne klase. Mo¼emo re²i da ti metodi u
izvedenoj klasi ,,kriju“ odgovaraju²e metode osnovne klase. Skrivenom qlanu
osnovne klase u izvedenoj klasi mo¼emo pristupiti samo ako ispred imena qlana
dodamo slu¼benu req base i taqku (‘.’).

public class Osnovna

{
//

public void radi()

{
//

}
public string pisi()

{
//

}
//...

}
public class Izvedena:Osnovna

{
//

Mala xkola objektno orijentisanog programiraǌa 45

new public void radi()

{
base.radi();

//....

}
public string pisi()

{
return base.pisi()+...;

}
//...

}

Ako u izvedenoj klasi definixemo metod istog zaglavǉa kao u osnovnoj klasi
(sa ili bez modifikatora new ispred zaglavǉa) onda taj metod mo¼emo pozvati
samo kao metod promenǉive izvedene klase (new se navodi da bi se kompajaleru
stavilo do znaǌa da smo namerno, a ne sluqajno, zaklonili metodu bazne klase;
ako se ne navede, kompajler upozorava programera).

Izvedena B = new Izvedena();

Text=B.Pisi(); B.radi();//pozivaju se metodi klase Izvedena

Ako objekat deklarixemo kao objekat osnovne klase pozivom metoda ²emo
pristupati metodu osnovne klase qak iako objekat kreiramo kao objekat izvedene
klase.

Osnovna A = new Izvedena();

A.radi();//poziva se metod klase Osnovna

Qesto se dexava da metode imaju istu svrhu ali se razliqitio realizuju
u razliqitim izvedenim klasama. U klasama izvedenim iz klase Osoba metod
za prikaz informacija o osobi razliqito se realizuje jer u svakoj klasi imamo
dodatne informacije, a metod za proveru da li je osoba starija od druge osobe
ili metod za promenu adrese osobe u svim klasama se realizuju na isti naqin.
Da bismo mogli predefinisati metod u izvedenoj potrebno je u osnovnoj klasi
proglasiti metod virtuelnim, navo±eǌem slu¼bene reqi virtual u zaglavǉu
metoda, pre navo±eǌa povratnog tipa metoda. U izvedenoj klasi pri definiciji
predefinisanog metoda treba navesti slu¼benu req override.

public class Osnovna

{
//

public virtual void radi()

{
//

}
public virtual string pisi()

{

46 S. Matkovi², M. §urixi²

//

}
//...

}
public class Izvedena:Osnovna

{
//

public override void radi()

{
//....

}
//...

}

Poziv virtuelnog metoda se vrxi na osnovu tipa objekta koji promenǉiva
sadr¼i a ne na osnovu tipa promenǉive.

Osnovna A = new Izvedena();

A.radi();//poziva se metod klase Izvedena

Predefinisaǌe virtuelnih metoda u jednoj ili vixe izvedenih klasa mo¼e
biti izostavǉeno. Tada se za objekte tih klasa poziva odgovaraju²i metod iz
klase koja je u hijerarhiji klasa najbli¼a klasi objekta.

Osnovna A = new Izvedena();

Text=A.pisi();//poziva se metod klase Osnovna

Izbor virtuelnog metoda koji se poziva vrxi se u toku izvrxavaǌa, a ne u
toku prevo±eǌa, korix²eǌem tehnike dinamiqkog povezivaǌa.

Metod ToString() je virtuelni metod klase object koja je osnovna klasa za
sve klase realizovane u C#. Zato u svakoj C# klasi imamo mogu²nost prede-
finisaǌa ovog metoda. Ako ga ne predefinixemo, virtuelni metod klase object
vra²a pun naziv klase u kojoj je objekat kreiran.

Virtuelne metode omogu²avaju da promenǉiva osnovne klase, u zavisnosti
od klase qiji joj je objekat dodeǉen, isti metod izvrxava na razliqite naqi-
ne (korix²eǌem predefinisanog (engl. override) metoda iz izvedene klase kojoj
objekat pripada). Tu osobinu objektno orijentisanog programiraǌa zovemo po-
limorfizam (pojavǉivaǌe u vixe oblika).

Osnovna A = new Osnovna();

A.radi();//poziva se metod klase Osnovna

A = new Izvedena();

A.radi();//poziva se metod klase Izvedena

Promenǉiva A je promenǉiva klase Osnovna. Kada joj dodelimo objekat
iste klase poziv metoda A.radi() izvrxava virtuelni metod radi() iz klase
Osnovna. Kada promenǉivoj A dodelimo objekat klase Izvedena istim pozivom
izvrxava se predefinisani (override) metod radi() iz klase Izvedena.

Mala xkola objektno orijentisanog programiraǌa 47

Zahvaǉuju²i polimorfizmu mo¼emo jednostavno kreirati aplikacije koje
rade na razliqitom hardveru i u razliqitim operativnim sistemima. Progra-
mer mo¼e pozivati odre±ene metode bez osvrtaǌa na naqin ǌihove realizacije.
Zamislimo da iz aplikacije treba xtampati dokument. Programer ²e pri kodi-
raǌu pozvati odgovaraju²i metod (recimo Print) aktivnog xtampaqa bez obzira
koji je model u pitaǌu. Taj metod je razliqito realizovan za svaki model po-
naosob, ali programer ne mora da razmixǉa o naqinu realizacije jer je svaki
xtampaq objekat neke od izvedenih klasa iz osnovne klase (npr. Printer). U
osnovnoj klasi je definisana virtuelna metoda Print koja je u izvedenim klasa-
ma predefinisana.

Primer 1. Osoba

U ovom primeru navex²emo uprox²enu realizaciju osnovne klase Osoba i
izvedenih klasa Ucenik i Profesor, i jednu jednostavnu aplikaciju kao ilu-
straciju prethodnog teksta. Slede²i dijagram prikazuje hijerarhiju klasa u
primeru:

U realizaciji navedenih klasa, koja sledi, komentarima su objaxǌeni delo-
vi koda koji se odnose na nasle±ivaǌe.

public class Osoba//osnovna klasa

{
string ime, prezime;

int brGodina;

string adresa;

public Osoba (string ime, string prezime,int brGodina, string adresa)

{
this.ime = ime;

this.prezime = prezime;

this.brGodina = brGodina;

this.adresa = adresa;

}
public Osoba()

{
ime = prezime =adresa="";

brGodina = 0;

}
public Osoba(Osoba X)

48 S. Matkovi², M. §urixi²

{
ime = X.ime;

prezime = X.prezime;

brGodina = X.brGodina;

adresa = X.adresa;

}
// virtuelna metoda

public virtual string informacije()

{
return ime + " " + prezime;

}
// nema potrebe da metodi koji slede budu virtuelni

//jer se jednako realizuju kod svih osoba

public bool starijaOd(Osoba B)

{
return brGodina > B.brGodina;

}
public void promenaAdrese(string novaAdresa)

{
adresa = novaAdresa;

}
}

public class Ucenik : Osoba

{
int razred;

int []ocene;

public Ucenik():base()

// nije neophodno eksplicitno pozvati konstruktor bazne klase,

// jer ako ne pozovemo nijedan konstruktor bazne klase automatski se

// poziva podrazumevani konstruktor, tj. konstruktor bez argumenata

{
razred = 1;

ocene=newint[15];

}
public Ucenik(string uIme, string uPrezime, int uBrGod, string uAdresa, int uRaz)

: base(uIme, uPrezime,uBrGod,uAdresa)

//poziv odgovarajuceg baznog konstruktora

{
razred = uRaz;

ocene = newint[15];

}
public Ucenik(Ucenik U)

: base(U)

// base(U) poziv konstruktora kopije bazne klase

// bez obzira sto je parametar konstruktora kopije bazne klase promenljiva tipa

Mala xkola objektno orijentisanog programiraǌa 49

// Osoba, poziv konstruktora kopije klase Osobe sa argumentom U koji je objekat

// izvedene klase Ucenik je ispravno jer je dozvoljeno promenljivoj bazne

// klase dodeliti objekat izvedene klase

{
razred = U.razred;

ocene=newint [U.ocene.Length];

for (int i = 0; i < U.ocene.Length; i++) ocene[i] = U.ocene[i];

}
//predefinisanje viruelnog metoda

public override string informacije()

{
returnbase. informacije ()+ " " + razred;

//poziva se metod osnovne klase

}
}

public class RedovanUcenik : Ucenik

{
char odeljenje;

int brojIzostanaka; public RedovanUcenik():

base()

{
odeee = ’ ’;

brojIzostanaka = 0;

}
public RedovanUcenik(string rIme, string rPrezime, int rBrGod,

string rAdresa, int rRaz,char rOdeljenje)

: base(rIme,rPrezime,rBrGod,rAdresa,rRaz)

{
odeljenje = rOdeljenje;

brojIzostanaka =0;

}
public RedovanUcenik(RedovanUcenik r): base(r)

{
odeljenje = r.odeljenje;

brojIzostanaka = r.brojIzostanaka;

}
public override string informacije()

{
returnbase. informacije ()+" "+odeljenje+" "+brojIzostanaka;

//bazna klasa za klasu RedovanUcenik je klasa Ucenik

}
// Mozemo dodati metode karakteristicne za redovnog ucenika

// na primer ocenjivanje ucenika, dodavanje izostanaka, izracunavanje proseka

}
public class VanredanUcenik : Ucenik

50 S. Matkovi², M. §urixi²

{
DateTime []datumPolagaa;

public VanredanUcenik(): base()

{
datumPolaganja=new DateTime[15];

}
public VanredanUcenik(string vIme, string vPrezime, int vBrGod,

string vAdresa, int vRaz)

: base(vIme, vPrezime,vBrGod, vAdresa, vRaz)

{
datumPolaganja=new DateTime[15];

}
public VanredanUcenik(VanredanUcenik V)

: base(V)

{
datumPolaganja = new DateTime[V.datumPolaganja.Length];

for (int i = 0; i < V.datumPolaganja.Length; i++)

datumPolaganja[i] = V.datumPolaganja[i];

}
// Mozemo dodati metode karakteristicne za vanrednog ucenika,

// na primer unos ocene ucenika

}
public class Profesor:Osoba

{
string predmet;

float koeficijent;

public Profesor()

{
predmet="";

koeficijent=0;

}
public Profesor (string ime, string prezime, int brGod,

string adresa,stringpredmet,float koeficijent)

: base(ime, prezime, brGod,adresa)

{
this.predmet = predmet;

this.koeficijent = koeficijent;

}
public Profesor (Profesor z) : base(z)

{
this.predmet = z.predmet;

this.koeficijent = z.koeficijent;

}
public override string informacije ()

{

Mala xkola objektno orijentisanog programiraǌa 51

returnbase. informacije () + " " + predmet + " " + koeficijent;

}
// Mozemo dodati jos metoda karakteristicnih za profesora

}

Sledi jednostavna aplikacija u kojoj koristimo prethodno realizovane kla-
se. U fajlu skola.txt nalaze se informacije o uqesnicima nastavnog procesa u
nekoj xkoli (najvixe 1000 uqesnika). Za svakog uqesnika u jednoj liniji je da-
ta informacija o vrsti tog uqesnika (da li je redovan uqenik, vanredan uqenik
ili profesor), a zatim sve potrebne informacije o ǌemu (svaka informacija u
posebnoj liniji). Aplikacijom je obezbe±en prikaz informacija o svim uqesni-
cima nastavnog procesa te xkole qije ime ili prezime, u zavisnosti od izbora
korisnika, poqiǌe datim stringom. Obezbe±en je i ispis imena i prezimena
najstarije osobe me±u prikazanim osobama.

Sve uqesnike nastavnog procesa, bez obzira xto pripadaju razliqitim kla-
sama, mo¼emo objediniti korix²eǌem niza a promenǉivih osnovne klase Osoba.
Dozvoǉeno je promenǉivoj osnovne klase dodeliti objekat izvedene klase, tako
da svakom elementu niza amo¼emo dodeliti objekte klase RedovanUcenik, Van-
redanUcenik, Profesor.

Osoba[] a = new Osoba[1000];

int n = 0;

Osoba citajOsobu(StreamReader sr)

{
string vrsta = sr.ReadLine();

Osoba A;

string ime, prezime,adresa;

int brGod;

ime = sr.ReadLine();

prezime=sr.ReadLine();

52 S. Matkovi², M. §urixi²

brGod=Convert.ToInt32(sr.ReadLine());

adresa=sr.ReadLine();

if (vrsta == "redovan ucenik")

A = new RedovanUcenik(ime, prezime, brGod, adresa,

Convert.ToInt32(sr.ReadLine()), sr.ReadLine()[0]);

elseif (vrsta == "vanredan ucenik")

A = new VanredanUcenik(ime, prezime, brGod,adresa,

Convert.ToInt32(sr.ReadLine()));

else

A = new Profesor(ime, prezime, brGod, adresa,

sr.ReadLine(),Convert.ToSingle(sr.ReadLine()));

return A;

}
private void Form1 Load(object sender, EventArgs e)

{
StreamReader sr = new StreamReader("skola.txt");

Osoba max = null;

while (!sr.EndOfStream)

{
a[n] = citajOsobu(sr);

lbSpisak.Items.Add(a[n].informacije());

// metod informacije() je virtuelni i u svakoj izvedenoj klasi je predefinisan

// pa se u zavisnosti od objekta koji se nalazi u promenljivoj a[n] poziva metod

// informacije() iz odgovarajuće klase

if (max == null || a[n].starijaOd(max))

//poziv metoda starijaOd definisanog u klasi Osoba

max = a[n];

n++;

}
sr.Close();

if (max != null)

{
lbSpisak.Items.Add("* * * * * * * *");

lbSpisak.Items.Add("najstarija osoba je ");

lbSpisak.Items.Add(max.Ime+ " "+max.Prezime);

}
}

private void tbIme TextChanged(object sender, EventArgs e)

{
string s = tbIme.Text.ToLower();

lbSpisak.Items.Clear();

Osoba max = null;

for (int i = 0; i < n; i++)

{
if((rbIme.Checked && a[i].Ime.ToLower().StartsWith(s))||

Mala xkola objektno orijentisanog programiraǌa 53

(rbPrezime.Checked && a[i].Prezime.ToLower().StartsWith(s)))

// koriscenje svojstava Ime i Prezime definisanih u klasi Osoba

{
lbSpisak.Items.Add(a[i].informacije());

// poziv metoda informacije() iz odgovarajuce klase

if (max == null || a[i].starijaOd(max))

//poziv metoda starijaOd definisanog u klasi Osoba

max = a[i];

}
}

if (max != null)

{
lbSpisak.Items.Add("* * * * * * * *");

lbSpisak.Items.Add("najstarija osoba je ");

lbSpisak.Items.Add(max.Ime + " " + max.Prezime);

}
}

Matematiqka gimnazija, Kraǉice Natalije 37, Beograd

