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Uvod

Sasvim je jasno da je matematika jezik fizike. Me±utim, u sredǌoj xkoli to
nije bax uvek dobro prezentovano. Ima, recimo, primera kad nastavnik matema-
tike upotrebǉava zadatke kojima ¼eli da prika¼e primenu izvoda ili integrala
u fizici. U suxtini, vrlo qesto su takozvani realistiqni zadaci u stvari ne-
realistiqni. Na primer, ,,kolika je kinetiqka energija tela mase 50 g, posle
pete sekunde padaǌa, ako je x = 5(t − t2) cm?“ Mo¼e li nastavnik da objasni
koje telo podle¼e ovom zakonu?

Nastavnik fizike imao je u toku xkolovaǌa vixe matematike nego obrnuto,
tako da je on taj koji bi trebalo da predla¼e realne fiziqke primere koji se
mogu upotrebiti u nastavi matematike. U saglasnosti sa ovim tvr±eǌem dajemo
ovde jedan primer koji ima dve funkcije. S jedne strane, odnosi se na realisti-
qni primer u matematici. Tako±e, prikazuje kako je integral izvanredno oru±e
matematike. Svakako i bez integrala je bilo mogu²e mnogo toga izraqunati –
tako qak ni ǋutn nije upotrebio integrale u svom epohalnom delu Matematiq-
ki principi filozofije prirode (Principia Mathematica Philosophiae Naturalis),
iako je bax on jedan od osnivaqa infinitezimalnog raquna.

Svakako, integracija omogu²ava da i ǉudi sa maǌe intuicije savladaju za-
datke koji su pre bili rexivi uz vixe napora. Jedan primer je poznato izraqu-
navaǌe segmenta parabole. Arhimed je doxao do rexeǌa bez integrala [1]. Danas
bi i ±aci, koji nisu nexto naroqito talentovani, upotrebom integrala kao po
recepturi doxli do rexeǌa. Ali treba nexto vixe intuicije i razmixǉaǌa
da do rezultata do±emo kao Arhimed. Poxto je ovaj primer vrlo poznat, i ne-
ki ga svrstavaju me±u 100 najinteresantnijih problema elementarne matematike
[2], ne treba ga ponavǉati ovde. Ali bax zato je ovde opisan fiziqki primer u
kojem integraciju najpre zameni zbir beskonaqnog reda, a tek onda prelazimo na
integraciju.

Moment inercije xtapa

U sluqaju gimnazija u Sloveniji, ±aci se prvo upoznaju sa momentom inerci-
je materijalne taqke, a za slo¼ena tela nastavnik fizike samo ispixe formule.
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Ali bax ovo pru¼a mogu²nost realistiqne matematike. Na poqetku qetvrte godi-
ne matematiqari objaxǌavaju beskonaqne redove. Zato predla¼em da nastavnik
matematike, upotrebom beskonaqnog reda, doka¼e formulu za sopstveni moment
inercije xtapa, i posle nekoliko meseci, kad je ispredavao integrale ponovi
isti primer metodom integracije.

§aci znaju formulu za inerciju materijalne taqke mase m, koja se kre²e po
kru¼noj putaǌi polupreqnika r, I = mr2. Neka je dat xtap du¼ine ` i mase m.
Sasvim je jasno da za odre±ivaǌe ǌegovog momenta inercije ne mo¼emo uzeti da je
sva masa skoncentrisana u te¼ixtu. Tada bi bilo r = 0, pa bi i moment inercije
bio jednak nuli, xto nije sluqaj. Zato mo¼emo pretpostaviti da umesto xtapa
imamo dve taqke sa masom polovine mase xtapa, koje su za qetvrtinu du¼ine
xtapa udaǉene od centra rotacije (slika 1).

Sl. 1. Xtap sa osom u centru. Taqke te¼ixta leve i desne polovine xtapa su naznaqene.

Ukupni moment inercije ove dve materijalne taqke je
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Svakako, ovo je tek prva aproksimacija. Zato ²emo xtap sada podeliti na qetiri
dela (slika 2).

Sl. 2. Xtap je podeǉen na qetiri jednaka dela.

Udaǉenosti te¼ixta delova od ose rotacije su 1/8 i 3/8 du¼ine xtapa.

Druga aproksimacija momenta inercije je
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Prva aproksimacija je I1 = 0,0625 m`2, a druga I2 = 0,0780 m`2. Ova razli-
ka upu²uje nas na nove aproksimacije. Ovaj put ²emo podeliti xtap na osam
jednakih delova i dobijamo
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Didaktiqki, vixe nije potrebno pisati jednaqinu po qlanovima, ve² mo¼emo
skratiti zapis:
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(12 + 32 + 52 + 72).
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Rezultat je I3 = 0,0820 m`2. Umesto podele na 16 delova potra¼i²emo odmah
podelu na n delova. Gledaju²i jednaqinu za I3, jednostavno mo¼emo zapisati
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(12 + 33 + · · ·+ (2n− 1)2).

Pretpostavǉamo da ±aci u qetvrtoj godini gimnazije znaju konaqni zbir

12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

Me±utim, nama treba zbir kvadrata neparnih brojeva. Od zbira svih kvadrata
oduze²emo kvadrate parnih brojeva. ǋihov zbir je

22 + 42 + · · ·+ n2 = 22(12 + 22 + · · ·+ (n/2)2)

= 22 (n/2)((n/2) + 1)(n + 1)
6
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Zato je zbir kvadrata neparnih brojeva jednak
n(n2 − 1)

6
. Posle sre±ivaǌa

mo¼emo zapisati
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i u graniqnom sluqaju, kada n →∞, dobijamo izraz za sopstveni moment inercije
xtapa
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koji je bez izvo±eǌa u nastavi fizike u drugom razredu napisan kao gotova for-
mula.

Qini nam se da je prikazani zadatak zbog realnog rezultata vredniji od
vrlo qesto zapisanih zadataka u u­benicima (,,U pravilnom xestouglu stranice a
upisana je kru¼nica, u ǌoj opet pravilan xestougao . . . Odrediti zbir povrxina
xestouglova i krugova“. Ili: ,,U kocki ivice a upisana je lopta, u lopti kocka
. . . Odrediti zapremine . . . “ itd. [3]).

Integracija

Inegral dolazi posle limesa i izvoda. Pedagoxki je da se isti primer jox
jednom uradi pomo²u integrala [4]. Polazimo od momenta inercije materijalne
taqke dm na rastojaǌu r od ose, dI = r2 dm. U sluqaju homogenog xtapa sa osom
kroz te¼ixte dobijamo
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Integracija ne samo da je br¼i postupak, ve² je i mnogo elegantniji put za
rexavaǌe slo¼enijih primera.

Zamislimo xtap du¼ine 80 cm na kojeg smo nalepili dodatni xtap od 20 cm
(slika 3).
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Sl. 3. Xtap sa dodatnim xtapom. Te¼ixte nije vixe na sredini xtapa.

Prvo nalazimo te¼ixte. Nalazi se 46 cm od levog kraja. Kroz te¼ixte
prolazi osa. Sada integral dobija jedan od mogu²ih oblika

I =
∫ 0,14

−0,46

r2ρS dr +
∫ 0,34

0,14

r2ρ · 2S dr.

Zakǉuqak. U istoriji nauke fizika i matematika su se stalno preplitale
i me±usobno bogatile. Na¼alost, danas je me±upredmetna saradǌa nedovoǉno
prisutna u xkolama. Nije uvek lako pridobiti kolegu matematiqara za ubaci-
vaǌe novih fiziqkih primera u nastavu matematike. Ali uz dobro pripremǉene
teme, koje svakako u ve²em delu sugerixe nastavnik fizike, mo¼emo oqekivati i
interesantniju nastavu matematike.
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