
NASTAVA RAQUNARSTVA

Stanka Matkovi�, Mijodrag �urixi�

MALA XKOLA OBJEKTNO ORIJENTISANOG
PROGRAMIRAǋA U PROGRAMSKOM JEZIKU C#

Qetvrti deo

Nasle�ivaǌe, drugi deo – apstraktne klase

U posledǌem primeru qlanka iz prethodnog broja mogli smo zakǉuqiti da
je svaki uqesnik nastavnog procesa objekat neke od klasa Ucenik ili Profesor.
Ne postoji uqesnik nastavnog procesa koji je objekat klase Osoba, pa mo¼emo
re²i da klasa Osoba samo postoji da bi objedinila zajedniqke karakteristike i
funkcionalnosti objekata izvedenih klasa.

Pri procesu generalizacije, izdvajaǌem zajedniqkih osobina i funkcional-
nosti nekoliko srodnih klasa, mo¼emo kreirati klasu na vixem nivou apstrak-
cije koja se ne materijalizuje kroz objekte (ne kreiramo ǌene objekte). Takvu
klasu zovemo apstraktnom klasom. Pri ǌenoj definiciji neophodno je pre imena
klase navesti modifikator abstract.

abstract public class Osnovna

{
// članovi klase

}

Apstraktna klasa je nepotpuna. Neophodno je iz ǌe izvoditi klase qije
²emo objekte kreirati i definisati ǌihovo ponaxaǌe. U apstraktnoj klasi
navodimo zajedniqke funkcionalnosti svih izvedenih klasa, koje u izvedenim
klasama mo¼emo predefinisati. Naravno, svaka od izvedenih klasa mo¼e imati
neke svoje specifiqne funkcionalnosti.

Vrlo qesto u klasi koja je dobijena generalizacijom ne mo¼emo realizovati
zajedniqku funkcionalnost koju svaka od izvedenih klasa ima ali se u svakoj od
ǌih realizuje na razliqit naqin. Polaze²i od oblika poput kruga, pravougaoni-
ka, kvadrata, trougla generalizacijom dolazimo do klase Oblik, a specijaliza-
cojom iz te klase razvijamo klase Krug, Kvadrat, Pravougaonik, Trougao. Svaki
oblik se mo¼e nacrtati, i za svaki oblik mo¼emo izraqunati obim i povrxinu,
ali u klasi Oblik ne mo¼emo realizovati te metode. Potrebno je da klasa Ob-
lik ima te funcionalnosti da bi, korix²eǌem polimorfizma, svakom elementu



Mala xkola objektno orijentisanog programiraǌa 33

skupa razliqitih oblika mogli uputiti zahtev da ih izvrxi. Svaki element ²e
na zahtev (Crtaj, Povrsina, Obim) odgovoriti na sebi svojstven naqin.

Metod apstraktne klase za koji dajemo samo deklaraciju a ne i definiciju,
naziva se apstraktni metod. Apstraktni metod pixemo navo±eǌem modifikatora
abstract ispred deklaracije metoda koju zavrxavamo taqka zarezom. Pri dekla-
raciji apstraktnog svojstva moramo navesti da li je to get i/ili set svojstvo.

abstract public povratniTip imeMetoda(listaParametara);

abstract public povratniTip imeSvojstva

{
get;

set;

}

U klasama koje su izvedene iz apstraktne klase pri realizaciji apstraktnih
qlanova modifikator abstract zameǌujemo slu¼benom reqi override. Ako u
izvedenoj klasi nismo realizovali sve apstraktne qlanove i ta izvedena klasa je
apstraktna pa je potrebno pri ǌenoj definiciji navesti modifikator abstract.

Primer 2. Oblik.

Navodimo realizaciju apstraktne klase Oblik i iz ǌe izvedenih klasa Krug,
Pravougaonik, Kvadrat i JednakostranicniTrougao. Posmatramo pojednostav-
ǉene oblike, kod kvadrata i pravougaonika stranice su paralelene koordinatnim
osama, a kod jednakostraniqnog trougla jedna stranica je paralelna x-osi.

U osnovnoj klasi Oblik definixemo zajedniqke (centar i boju oblika) a u iz-
vedenim klasama dodatne atribute. Svi oblici imaju slede²e funkcionalnosti:
odre±ivaǌe obima, odre±ivaǌe povrxine, crtaǌe, provera da li oblik sadr¼i
datu taqku i pomeraǌe oblika za date vrednosti po x i y osi. Samo posledǌa
od navedenih funkcionalnosti realizuje se na isti naqin u svim klasama, pome-
raǌem centra oblika za date vrednosti. Zato taj metod realizujemo u osnovnoj
klasi i nema potrebe da ga u izvedenim klasama predefinixemo. Ostale finkci-
onalnosti (crtaj, obim, povrsina, sadrzi) ne mo¼emo realizovati u osnovnoj
klasi dok ne konkretizujemo oblik. Zato su u klasi Oblik ove funkcionalnosti
apstraktne, a ǌihova realizacija se nalazi u izvedenim klasama.



34 S. Matkovi², M. §urixi²

Napomenimo da je kvadrat pravougaonik kod kojeg du¼ina i xirina imaju
iste vrednosti, pa u skladu sa tim klasu Kvadrat dobijamo specijalizacijom iz
klase Pravougaonik.

public abstract class Oblik
{

protected Color boja;
protected PointF centar;
public Oblik(Color boja, PointF centar)

{
this.boja = boja;
this.centar = centar;
}

public Oblik()
{
this.boja = Color.Black;
this.centar = new PointF(0, 0);
}

public void Pomeri(int dx, int dy)
{
centar.X += dx;
centar.Y += dy;
}

// apstraktna get svojstva za odre -divanje obima i površine
public abstract float Obim

{ get; }
public abstract float Povrsina

{ get; }
// apstraktni metod za crtanje oblika
public abstract void Crtaj(Graphics g);
// apstraktni metod za proveru da li oblik sadrži datu tačku
public abstract bool SadrziTacku(PointF A );

}
public class Krug : Oblik

{
float r;
public Krug(Color boja, PointF centar, float r):base(boja, centar)

{
this.r = r;
}

public Krug():base()
{
this.r = 10;
}

public override void Crtaj(Graphics g)
{
g.FillEllipse(newSolidBrush(base.boja), base.centar.X - r, base.centar.Y - r,

2 * r, 2 * r);
}

public override float Povrsina
{
get { return r * r * (float)Math.PI; }
}

public override float Obim
{
get { return 2 * r * (float)Math.PI; }
}

public override bool SadrziTacku(PointF M)
{



Mala xkola objektno orijentisanog programiraǌa 35

return Math.Sqrt((M.X - centar.X) * (M.X - centar.X) + (M.Y - centar.Y) *
(M.Y - centar.Y)) <= r;

}
}

public class JednakostranicniTrougao : Oblik
{
float a;
public JednakostranicniTrougao(Color boja, PointF centar,float a) : base(boja,

centar)
{
this.a = a;
}

public JednakostranicniTrougao() : base()
{
this.a = 10;
}

public override void Crtaj(Graphics g)
{
PointF[] teme = newPointF[3];
float h=a*(float)Math.Sqrt(3) /2;

teme[0] = new PointF(centar.X - a / 2, centar.Y + h / 3);
teme[1] = new PointF(centar.X + a / 2, centar.Y + h / 3);
teme[2] = new PointF(centar.X, centar.Y - 2*h / 3);
g.FillPolygon(newSolidBrush(boja), teme);

}
public override float Povrsina

{
get { return a * a * (float)Math.Sqrt(3) / 4; }
}

public override float Obim
{
get { return 3 * a; }
}

/*Proveru da li trougao sadrži tačku M vršimo tako što proverimo da li su tačka M i centar
trougla sa iste strane svake od pravih odre -denih temenima trougla A i B, A i C, B i C. U takvom
rešenju nismo koristili činjenicu da je jedna stranica trougla paralelna x osi, pa se ovo rešenje
može lako uopštiti za proveru pripadnosti tačke proizvoljnom trouglu.*/
public override bool SadrziTacku(PointF M)

{
PointF A, B, C;
float h = a * (float)Math.Sqrt(3) / 2;

A = new PointF(centar.X - a / 2, centar.Y + h / 3);
B = new PointF(centar.X + a / 2, centar.Y + h / 3);
C = new PointF(centar.X, centar.Y - 2 * h / 3);

return SaIsteStranePrave(A, B, M, centar) && SaIsteStranePrave(B, C, M, centar)
&& SaIsteStranePrave(A, C, M, centar);

}
private static bool SaIsteStranePrave(PointF A, PointF B, PointF M, PointF N)

{
float a = B.Y - A.Y;
float b = -(B.X - A.X);
float c = -A.X * (B.Y - A.Y) + A.Y * (B.X - A.X);
returnf(a, b, c, M) * f(a, b, c, N) >= 0;
}

private static floatf(float a, float b, float c, PointF T)
{
return a * T.X + b * T.Y + c;
}

}



36 S. Matkovi², M. §urixi²

public class Pravougaonik : Oblik
{
protectedfloat a, b;
public Pravougaonik(Color boja, PointF centar, float a, float b) : base(boja,

centar)
{
this.a = a;
this.b = b;
}

public Pravougaonik() : base()
{
this.a = this.b = 10;
}

public override void Crtaj(Graphics g)
{
g.FillRectangle(newSolidBrush(base.boja), centar.X-a/2,centar.Y-b/2,a,b);
}

public override float Povrsina
{
get return a * b;
}

public override float Obim
{
get { return 2 * a + 2 * b; }
}

public override bool SadrziTacku(PointF M)
{
return(M.X >= centar.X - a / 2)&&(M.X <= centar.X + a / 2)
&&(M.Y >= centar.Y - b / 2)&&(M.Y <= centar.Y + b / 2);
}

}
public class Kvadrat : Pravougaonik

{
public Kvadrat(Color boja, PointF centar, float a) : base(boja,centar, a, a)

{ }
public Kvadrat() : base()

{ }
}

Sledi aplikacija u kojoj na sluqajan naqin generixemo n oblika, prikazu-
jemo generisane oblike i obezbe±ujemo pomeraǌe prevlaqeǌem mixa onih oblika
koji sadr¼e taqku na kojoj smo pritisnuli taster mixa.

Generisane oblike pamtimo nizom o qiji su elementi klase Oblik. Klasa Ob-
lik je osnovna klasa pa elementi niza o mogu biti objekti svih izvedenih klasa iz
klase Oblik. Prilikom crtaǌa oblika i provere da li oblik sadr¼i datu taqku
ostvaruje se polimorfizam. Za svaki element niza na isti naqin pozivamo metod
za crtaǌe o[i].Crtaj(e.Graphics), pri qemu se poziva predefinisani metod iz
odgovaraju²e klase u zavisnosti od oblika koji element o[i] sadr¼i (Krug, Pra-
vouganik, JednakostranicniTrougao, Kvadrat). Sliqno va¼i i pri pozivu
metoda za proveru da li oblik sadr¼i datu taqku, o[i].SadrziTacku(A).

Oblik[] o;
int n;
Random R = new Random();
bool[] pomeraj;
float x=-1, y=-1;



Mala xkola objektno orijentisanog programiraǌa 37

private void pictureBox1 Paint(object sender, PaintEventArgs e)
{
for (int i = 0; i < n; i++)
o[i].Crtaj(e.Graphics);
}

private void numericUpDown1 ValueChanged(object sender, EventArgs e)
{
n = (int)numericUpDown1.Value;
o = newOblik[n];
for (int i = 0; i < n; i++)
{

int t = R.Next(1, 5);
Color boja = Color.FromArgb(R.Next(200, 256), R.Next(256), R.Next(256), R.Next(256));
PointFP=newPointF(R.Next(0,ClientRectangle.Width),R.Next(0,ClientRectangle.Height));
switch (t)

{
case 1:

o[i] = newKrug(boja, P,R.Next(10,20)); break;
case 2:

o[i] = newJednakostranicniTrougao(boja, P, R.Next(20,50)); break;
case 3:

o[i] = newPravougaonik(boja,P, R.Next(10,50),R.Next(10,50)); break;
case 4:

o[i] = newKvadrat(boja, P, R.Next(10, 50)); break;
}
}
pictureBox1.Refresh();
// aktivira metodu pictureBox1 Paint
}

private void pictureBox1 MouseDown(object sender, MouseEventArgs e)
{
x = e.X;
y = e.Y;
PointF A = new PointF(e.X, e.Y);
pomeraj = newbool[n];
for (int i = 0; i < n; i++)
pomeraj[i] = o[i].SadrziTacku(A);
}

private void picture Box1 MouseUp(object sender, MouseEventArgs e)
{



38 S. Matkovi², M. §urixi²

x = y = -1;
}

private void picture Box1 MouseMove(object sender, MouseEventArgs e)
{
if (x != -1 && y != -1)

{
for (int i = 0; i < n; i++)
if (pomeraj[i]) o[i].Pomeri(e.X - x, e.Y - y);
x = e.X;
y = e.Y;
pictureBox1.Refresh();
}

}

Primer 3. Funkcija.
Posmatrajmo matematiqke funkcije, definisane na skupu realnih brojeva.

Najprostije realne funkcije su konstante (funkcije oblika f(x) = c, c ∈ R) i
promenǉive (f(x) = x). Sve ostale gradimo primenom osnovnih aritmetiqkih
operacija ili specijalnih funkcija (trigonometrijske, logaritamske, eksponen-
cijalne . . . ) na prethodno izgra±ene funkcije.

Generalizacijom mo¼emo do²i do osnovne klase Funkcija. Za svaku funk-
ciju mo¼emo odrediti vrednost u zadatoj realnoj taqki i nacrtati grafik u od-
re±enom intervalu. Odre±ivaǌe vrednosti se razlikuje od funkcije do funkcije
pa metod Vrednost(double x) mora biti apstraktan kao i sama klasa. Postu-
pak crtaǌa grafika je za sve funkcije isti (spajamo taqke sa koordinatama (x,
Vrednost(x)) za uzastopne vrednosti x) pa ga realizujemo u klasi Funkcija
(metod Nacrtaj). U osnovnoj klasi mo¼emo realizovati i operatore za osnovne
aritmetiqke operacije jer se izvrxavaju na isti naqin, bez obzira na to koje
funkcije se primeǌuju.

Iz klase Funkcija, specijalizacijom, izvodimo klase Konstanta, Promen-
ljiva, SlozenaFunkcija, Sinusna . . . U svakoj od ovih klasa mora se prede-
finisati apstraktni metod Vrednost. Klase SlozenaFunkcija i Sinusna za
atribute imaju druge funkcije xto je u skladu sa odgovaraju²im matematiqkim
funkcijama (znamo da je parametar sinusne funkcije proizvoǉna realna funkci-
ja a slo¼ena funkcija predstavǉa rezultat primene aritmetiqkih operacija na
proizvoǉne realne funkcije).
abstract public class Funkcija
{

abstract public double Vrednost(double x);
public void Nacrtaj(Graphics g, PointF centar, double x0, double x1, float k)

//centar - (0,0), (x0,x1) - interval, k broj pt u jedinici Dekartovog KS
{
for (doublex = x0; x<= x1; x+=0.001)
g.DrawLine(Pens.Black, centar.X + (float)x * k, centar.Y (float)Vrednost(x) * k,

centar.X + (float)(x+0.001) * k, centar.Y - (float)Vrednost(x+0.001) * k);
}
public static Funkcija operator +(Funkcija A, Funkcija B)
{
return new SlozenaFunkcija(A, B, ’+’);
}

public static Funkcija operator -(Funkcija A, Funkcija B)



Mala xkola objektno orijentisanog programiraǌa 39

{
return new SlozenaFunkcija(A, B, ’-’);
}

public static Funkcija operator *(Funkcija A, Funkcija B)
{
return new SlozenaFunkcija(A, B, ’*’);
}

public static Funkcija operator /(Funkcija A, Funkcija B)
{
return new SlozenaFunkcija(A, B, ’/’);
}

public static Funkcij aoperator ˆ(Funkcija A, Funkcija B)
{
return new SlozenaFunkcija(A, B, ’ˆ’);
}

}
public class Konstanta : Funkcija

{
double c;
public Konstanta(double c1)
{
c = c1;
}

public override double Vrednost(double x)
{
return c;
}

public override string ToString()
{
return c.ToString();
}
}

public class Promenljiva : Funkcija
{
public override double Vrednost(double x)
{
return x;
}

public override string ToString()
{
return"x";
}
}

public class Sinusna : Funkcija
{
Funkcija l;
public Sinusna(Funkcija f)
{
l = f;
}

public override double Vrednost(double x)
{
returnMath.Sin(l.Vrednost(x));
}

public override string ToString()
{
return"sin("+l.ToString()+")";
}



40 S. Matkovi², M. §urixi²

}

public class SlozenaFunkcija : Funkcija
{
Funkcija A;
Funkcija B;
Char operacija;
public SlozenaFunkcija(Funkcija a, Funkcija b, Char c)

{
A = a;
B = b;
operacija = c;
}

public override double Vrednost(double x)
{
switch (operacija)
{
case’+’: return A.Vrednost(x) + B.Vrednost(x);
case’-’: return A.Vrednost(x) - B.Vrednost(x);
case’*’: return A.Vrednost(x) * B.Vrednost(x);
case’/’: return A.Vrednost(x) / B.Vrednost(x);
case’ˆ’: returnMath.Pow(A.Vrednost(x), B.Vrednost(x));
}
return 0;
}

public override string ToString()
{
return A.ToString() + operacija + B.ToString();
}
}

Sliqno klasi Sinusna mo¼emo definisati i mnoge druge klase koje pred-
stavǉaju realne funkcije qije je izraqunavaǌe realizovano u sistemskoj klasi
Math (trigonometrijske, eksponencijalne, logaritamske, . . . ).

Navodimo i primer jednostavne aplikacije koja crta grafik funkcije f(x) =
sin(x2 + 2) · 2 na intervalu od −10 do 10.

private void btNacrtaj Click(object sender, EventArgs e)
{
Graphics g=pictureBox1.CreateGraphics();
Funkcija g1 = new Promenljiva(); //kreiranje promenljive x
Funkcija g2 = new Konstanta(2); //kreiranje konstante 2
Funkcija g3 = (g1 ˆ g2) + g2; //kreiranje funkcije xˆ2+2

Funkcija f = (newSinusna(g3)) * g2;// kreiranje funkcije sin(xˆ2+2)*2
f.Nacrtaj(g, new PointF(pictureBox1.Width/2, pictureBox1.Height/2),-10,10,30);
Text = f.ToString();

}

Ovo je samo prikaz osnovne ideje o klasama pomo²u kojih mo¼emo predstavi-
ti realne funkcije. Realizacijom konstruktora koji za parametar imaju string
mo¼emo znaqajno poboǉxati mogu²nosti ovog sistema klasa. Sliqno metodu Vre-
dnost mo¼emo realizovati metod Izvod koji bi vratio funkciju koja predstavǉa
prvi izvod polazne funkcije. Ostavǉamo qitaocima da sami usavrxe ovaj sof-
tver u skladu sa svojim ¼eǉama!



Mala xkola objektno orijentisanog programiraǌa 41

Zakǉuqak

Nasle±ivaǌe nam daje mogu²nost korix²eǌa ve² definisane klase za iz-
radu novih klasa koje unapred dobijaju veliki deo funkcionalnosti, a imamo i
mogu²nost prilago±avaǌa izvedene klase svojim potrebama. Na taj naqin obez-
be±ujemo vixestruku upotrebu koda (isti kod koristimo u osnovnoj i izvedenoj
klasi). Zahvaǉuju²i tome, programiraǌe je u prethodnom periodu ostvarilo
znaqajan napredak, jer su programeri usredsre±eni na rexavaǌe specifiqnih
problema a veliki deo projekta, pre svega dizajn i strukturu, nasle±uju iz kla-
sa grupisanih u sistemske biblioteke ili biblioteka drugih programera.

I u nastavi programiraǌa nasle±ivaǌe se mo¼e vrlo lepo iskoristiti. Mo-
gu²e je postupno nadogra±ivati odre±ene projekte kroz izvo±eǌe sve slo¼enijih
klasa. Tako±e, profesor mo¼e kreirati osnovnu klasu a ±acima prepustiti da
realizuju po grupama razne izvedene klase da bi na kraju zajedno kreirali vrlo
upotrebǉive aplikacije.

Ovim zavrxavamo ,,Malu xkolu OOP u C#“ na stranicama vaxeg qasopisa.
Nadamo se da smo vas bar malo zainteresovali i da smo vam pomogli da ove
savremene metode programiraǌa pribli¼ite svojim ±acima.

Matematiqka gimnazija, Kraǉice Natalije 37, Beograd


