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Ahmesov papirus (poznatiji pod nazivom Rindov papirus), napisan oko
1800. g. pne, jedan je od najstarijih spomenika ǉudske kulture. Evo malog iseqka
tog dexifrovanog teksta: ,,Pouka, kako posti²i znaǌa svih nejasnih (texkih)
stvari . . . svih tajni koje u sebi skrivaju stvari . . . pisac Ahmes napisao je ovo
. . . iz starih rukopisa . . . “

Ahmesov papirus sadr¼i niz zadataka, koje savremena matematika rexava
pomo²u jednaqina prvog stepena. ǋihov autor ih rexava naqinom koji ²e tokom
vixe milenijuma predstavǉati glavni postupak za rexavaǌe sliqnih zadataka,
tzv. ,,metodom la¼nog polo¼aja“. Egip²ani su tada imali za obele¼avaǌe nepo-
znate poseban znak i naziv, posledǌe se izgovara ,,hua“ ili ,,aha“ i prevodi se
reqju ,,gomila“.

U Ahmesovom papirusu navodi se primer:
,,Gomila. ǋen sedmi deo, ona cela. Da qini 19.“

Ovo znaqi da treba rexiti jednaqinu x +
x

7
= 19. Rexeǌe je x = 16

5
8
.

Suxtina Ahmesovog rexavaǌa je u slede²em: On je raqunao sa razlomcima

kao sa prirodnim brojevima, tj. pretpostavio je da je ,,gomila“ – 7; tada ²e
1
7

,,gomile“ biti 1 (kao jedno celo). Pri uqiǌenoj pretpostavci bi se desna strana
jednaqine koju rexavamo izjednaqila sa levom, tj. sa osam (7 + 1). Osam je maǌi
od broja 19 tra¼enog u zadatku. Ahmes u mislima udvostruqava taj broj i dobija
broj 16. Slede²e udvostruqeǌe dalo bi 32, ali taj broj premaxuje zadati broj
19 i u rexeǌu on, zbog toga, zvezdicom obele¼ava broj 16, kao onaj deo koji treba

da u±e u rexeǌe. Jox nedostaje 19−16 = 3. Ahmes zato uzima
1
2

od 8, tj. 4. Ovaj
deo predlo¼enog broja ne mo¼e da u±e u tra¼eno rexeǌe, jer treba dodati samo

3. Tada on rexava zadatak uzimaju²i
1
4

i
1
8

od 8, tj. 2 i 1, koji kada se saberu sa
16 daju 19. Na ovaj naqin Ahmes je ustanovio da prvobitno postavǉeno znaqeǌe

za ,,gomilu“– 7 treba uzeti 2 +
1
4

+
1
8

puta, da bi se zadovoǉio uslov zadatka.
Dakle, rexeǌe je

x = 7 ·
(

2 +
1
4

+
1
8

)
= 7 · 16 + 2 + 1

8
=

133
8

= 16
5
8
.
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Jezikom savremene matematike Ahmesova priqa, kojom on 1800 g. pne. ka¼e da
samo prenosi, tj. prepisuje zapis sa jednog mnogo starijeg papirusa iz vremena
oko 4000. g. pne, mogla bi izgledati ovako:

x +
x

7
= 19 ⇐⇒ 7 · x + x = 7 · 19 ⇐⇒ 8x = 7(2 · 8 + 2 + 1)

⇐⇒ 8 · x = 8 · 7 ·
(

2 +
2
8

+
1
8

)
⇐⇒ x = 7 ·

(
2 +

1
4

+
1
8

)

⇐⇒ x =
133
8

⇐⇒ x = 16
5
8
.

Primer 1. Ahmesovim metodom, prilago±enom jeziku savremene matematike,
rexiti jednaqinu x +

x

9
= 37.

Rexeǌe. x +
x

9
= 37 ⇐⇒ x = 9 ·

(
3 +

1
2

+
1
5

)
.

Jednaqine drugog stepena znali su da rexavaju jox Vavilonci oko 2000. g.
pne. Grqki matematiqari rexavali su kvadratne jednaqine geometrijski. Kod
Euklida to rexavaǌe se izvodi deǉeǌem du¼i na aritmetiqku i geometrijsku
sredinu. Kod Herona i Diofanta sre²emo metode rexavaǌa koje se po suxtini
u mnogo qemu podudaraju sa naxim metodama. Indijski i kineski matematiqa-
ri posmatraju i negativne korene kvadratne jednaqine u prvim vekovima naxe
ere. Poznati indijski matematiqar Bashara u XII veku prime²uje kako ǉudi
negativne korene ne odobravaju.

Arapskom matematiqaru al-Horezmiju dugujemo zahvalnost za daǉi zna-
qajan iskorak pri rexavaǌu kvadratnih jednaqina. On daje postupak za iz-
vo±eǌe formule za rexavaǌe kvadratne jednaqine koje i danas sre²emo u nekim
u­benicima. Konkretno, on rexava jednaqinu x2 + 10 · x = 39. Uzima da je x
stranica kvadrata, i konstruixe nad svakom od ǌegovih stranica pravougaoni-
ke sa xirinom koja je jednaka qetvrtini koeficijenta drugog qlana jednaqine,

tj.
10
4

=
5
2

(slika 1). Povrxina ta qetiri pravougaonoka je 4 · 5
2
· x = 10 · x.

Povrxina figure u obliku krsta jednaka je x2 + 10 · x, odnosno levoj strani
date jednaqine. Dopunimo ovu figuru na uglovima pomo²u qetiri kvadrata do
kvadrata stranice x + 5. Povrxina dobijenog kvadrata je a2 = (x + 5)2. Taj
kvadrat smo dobili tako xto smo figuri u obliku krsta povrxine x2 + 10 · x
dodali qetiri podudarna kvadrata na uglovima, pri qemu je ǌihova stranica

5
2
,

a povrxina 4 ·
(5

2

)2
= 25.

Dakle, imamo

(x + 5)2 = 39 + 25 ⇐⇒ (x + 5)2 = 64 ⇐⇒ x + 5 = 8 ∨ x + 5 = −8
⇐⇒ x = 3 ∨ x = −13.
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Pogledajmo kako sve to izgleda u opxtem sluqaju jednaqine x2+p ·x = q. Uz-
mimo da je x stranica kvadrata, i konstruiximo nad svakom od ǌegovih stranica
pravougaonike sa xirinom koja je jednaka qetvrtini koeficijenta drugog qlana
jednaqine, tj.

p

4
(slika 2). Povrxina ta qetiri pravougaonoka je 4 · p

4
· x = p · x.

Povrxina figure u obliku krsta jednaka je x2+p·x, odnosno levoj strani date je-
dnaqine. Dopunimo ovu figuru na uglovima pomo²u qetiri kvadrata do kvadrata

stranice x+
p

2
. Povrxina dobijenog kvadrata je a2 =

(
x+

p

2

)2
. Taj kvadrat smo

dobili tako xto smo figuri u obliku krsta povrxine x2 + p · x dodali qetiri
podudarna kvadrata na uglovima, pri qemu je ǌihova stranica

p

4
, a povrxina

4 ·
(p

4

)2
=

(p

2

)2
. Dakle, imamo

x2 + p · x = q ⇐⇒
(
x +

p

2

)2
= q +

(p

2

)2

⇐⇒ x +
p

2
=

√(p

2

)2
+ q ∨ x +

p

2
= −

√(p

2

)2
+ q,

pa je x1,2 = −p

2
±

√(p

2

)2
+ q.

Ovo su bili primeri primene raritetnih rekonstrukcija u nastavi matema-
tike. Jasno je da ovakve rekonstrukcije bogate nastavu i veoma su upotrebǉivi
kao katalizacioni qinioci u funkciji aktiviziraǌa i dinamiziraǌa nastave
matematike osnovne i sredǌe xkole, tj. u funkciji razbijaǌa formalizma u ǌoj.
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