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PRAVILA NALA�EǋA QLANOVA NIZA

Nastavnim programom predmeta Matematika predvi±eno je da u qetvrtom
razredu osnovne xkole uqenici upoznaju skup N prirodnih brojeva i skup N0

prirodnih brojeva proxirenih nulom. U petom razredu, u okviru nastavne teme
Skupovi, ovi se sadr¼aji ponavǉaju i sistematizuju, da bismo se, potom, ǌima
koristili i u slede²im razredima. Pri tome se, prirodno, pojavǉuje i pojam ni-
za prirodnih brojeva, zadatog pravilom nala¼eǌa ǌegovih qlanova. Ono mo¼e
biti zapisano odgovaraju²om formulom n-tog qlana ili zadato na neki drugi
naqin. Samo za naxu upotrebu, nikako za nastavnu praksu u petom razredu, pod-
setimo se da, ako je an pomenuti n-ti qlan niza, mi takav niz zapisujemo sa
(a1, a2, a3, . . . , an, . . . ) ili, kra²e (an)n∈N. U petom razredu ²emo se zadovoǉiti
time da, u sluqajevima kada je poznata formula n-tog qlana, niz zadamo tako xto
samo zapixemo formulu za an, na primer an = 4n− 3, ili hn = 2n, i da, eventu-
alno, ,,nani¼emo“ prvih nekoliko (bar tri) qlanova posmatranog niza; u prvom
sluqaju nalazimo niz 1, 5, 9, 13, . . . a u drugom sluqaju 2, 4, 8, . . . . Zadavaǌe
pravila nala¼eǌa qlanova niza ,,na neki drugi naqin“ mo¼e biti raznovrsno.
Primer tako formiranog niza mo¼e biti: prvi qlan niza je 1 a svaki daǉi qlan
niza jednak je zbiru ǌegovog rednog broja u nizu i qlana niza koji mu pretho-
di. Ako ,,nani¼emo“ prvih nekoliko qlanova, na²i ²emo brojeve: 1, 2 + 1 = 3,
3+3 = 3+(2+1) = 6, 4+6 = 4+(3+2+1) = 10, 5+10 = 5+(4+3+2+1) = 15,
. . . : dobili smo niz 1, 3, 6, 10, 15, . . . . U ovom sluqaju ve²ina uqenika ²e,
uvereni smo, lako na²i formulu za nala¼eǌe n-tog qlana niza u obliku

an = n + (1 + 2 + 3 + · · ·+ (n− 1)) = 1 + 2 + 3 + · · ·+ (n− 1) + n, n ∈ N,

a izvestan broj ǌih ²e biti u staǌu i da na±e taj zbir i do±e do formule

an =
n(n + 1)

2
, n ∈ N.

Poznat je primer formiraǌa Fibonaqijevog niza (Fn)n∈N0 ; ǌegovi su qla-
novi Fibonaqijevi brojevi Fn definisani sa:

F0 = 0, F1 = 1, Fn+1 = Fn−1 + Fn za sve n > 1,

pa ²e prvih nekoliko qlanova tog niza biti brojevi 0, 1, 1, 2, 3, 5, 8, 13, . . . . Ov-
de smo sreli tipiqan primer niza koji je zadat rekurentnom formulom, kojom
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se qlanovi niza zadaju preko nekoliko (u naxem sluqaju dva) prethodnih qlano-
va niza, pri qemu je poznato dovoǉno poqetnih qlanova niza (u naxem sluqaju
bar dva) koji ²e obezbediti odre±enost svih daǉih qlanova niza. Nadamo se
da ne greximo ako ustvrdimo da ²e veliki broj uqenika starijih razreda OX
na osnovu navedenih prvih osam qlanova Fibonaqijevog niza biti u staǌu da
prepozna pravilo po kojem je taj niz formiran. Ono bi moglo glasiti: Prva dva
qlana niza su 0 i 1, a svaki slede²i qlan se dobija kao zbir prethodna dva qlana
niza. Ali, kao xto znamo, problem nala¼eǌa pravila po kojem se Fn izra¼ava
u funkciji od n ∈ N0 nije jednostavan i zahteva ozbiǉan matematiqki aparat
(videti, na primer, [1]). Podsetimo se da to pravilo (mi bismo rekli formula
opxteg qlana) glasi:

Fn =
an − bn√

5
, a =

1 +
√

5
2

, b =
1−√5

2
, n ∈ N0.

Ovde navedeni, kao i brojni zadaci s kojima smo se sreli tokom naxe na-
stavne prakse u okvirima nastave matematike u OX ili bavǉeǌa vannastavnim
aktivnostima u oblasti matematike, uverili su nas da je nala¼eǌe prvih neko-
liko qlanova niza koji je zadat formulom opxteg qlana kao pravilom nala¼eǌa
ǌegovog n-tog qlana, po pravilu, jednostavan zadatak. Ovo ,,po pravilu“ treba
da nas upozori da nije uvek tako; primer Fibonaqijevog niza nam pokazuje da je,
na primer, jednostavno na²i ǌegov osmi qlan (broj 13) koriste²i se “ izvornim“
pravilom nala¼eǌa ǌegovih qlanova, a nala¼eǌe tog istog qlana (ǌega odre±uje
n = 7 jer nizaǌe poqiǌemo od n = 0) pomo²u formule opxteg qlana je ozbiǉan
zadatak i sigurno mu nije mesto u nastavi matematike u OX. Zadovoǉavamo se,
zavisno od razreda u kojem se nalazimo, klasama nizova tipa:

an = 3n− 2, bn = n2 + 1, cn = 3n, dn = 2n − 1, n ∈ N,

ili (ako to procenimo prihvatǉivim) ǌihovim kombinacijama:

en = n2 + 2n− 1, fn = 3nn, gn = 3 · 2n − 5n + 2, n ∈ N.

Uqenici ²e bez texko²a ,,nanizati“ prvih nekoliko qlanova takvih nizova.
Qex²e se, me±utim, sre²emo sa zadacima u kojima treba odrediti, prepo-

znati, naslutiti, . . . , pravilo za odre±ivaǌe n-tog qlana niza na osnovu datih
nekoliko ǌegovih poqetnih qlanova. Formulacijom takvih zadataka najqex²e se
tra¼i da se navede slede²ih nekoliko qlanova niza, xto, naravno podrazumeva
da smo pomenuto pravilo odredili, prepoznali, naslutili, . . . , ili se tra¼i
da se ono zapixe u obliku formule (formule opxteg qlana), pa se daǉi qlano-
vi niza mogu raqunati. Ovakve zadatke sre²emo u svim obrazovnim sistemima,
pa i u naxem, u osnovnoj i dodatnoj nastavi, na raznim testovima za proveru
znaǌa, ukǉuquju²i i zavrxne ispite (male mature), na raznim takmiqeǌima, u
testovima za proveru inteligencije, u zanimǉivim matematikama raznih name-
na, u novinama i qasopisima u rubrikama za popularizaciju nauka, . . . . Oni su
zanimǉivi, podsticajni i, na¼alost, po pravilu pogrexno fomulisani.

Prirodno je, u vezi sa zadacima ovakvog tipa, sebi postaviti pitaǌe: da li
je sa prvih nekoliko qlanova niza pravilo ,,nizaǌa“ ǌegovih qlanova jednoznaqno
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odre±eno? Odgovor je negativan. Zbog toga zadatke ovakvog tipa moramo oprezno
formulisati.

Pretpostavimo da je u odeǉeǌu petog razreda ra±en test i da smo uqenicima
zadali nekoliko zadataka sa sadr¼ajima iz ove problematike.

Primer 1. Poznata su nam prva tri qlana niza 2, 4, 8, . . . . Koja su slede²a
dva qlana tog niza?

Uqenici, naravno, prepoznaju stepene broja 2 (2 = 21, 4 = 22, 8 = 23) i
bez mnogo razmixǉaǌa zakǉuquju da su slede²a dva qlana tog niza brojevi 16
i 32 (16 = 24, 32 = 25). Time su prepoznali, (boǉe) naslutili, a neki od ǌih
i napisali, da je pravilo za nala¼eǌe n-tog qlana naxeg niza (formula opxteg
qlana) an = 2n. Uqenici zadovoǉni, mi zadovoǉni.

A radoznali Perica jox sedi i znoji se i posle desetak minuta trijumfalno
nam saopxtava da su slede²a dva qlana tog niza brojevi 14 i 22. Uqenici za-
tim zasipaju Pericu pitaǌima: ,,Kako to, Perice?“, ,,Zaxto bi to bili upravo
brojevi 14 i 22?“, ,,Razmisli Perice jox malo!“ Ali, Perica se ne da; pokazuje
nam svesku u kojoj je zapisao ,,svoju“ formulu opxteg qlana pn = n2 − n + 2.
Uqenici proveravaju ǌegovu raqunicu i nalaze, redom p1 = 12 − 1 + 2 = 2,
p2 = 22−2+2 = 4, p3 = 32−3+2 = 8, p4 = 42−4+2 = 14, p5 = 52−5+2 = 22.
,,Pa Perica je u pravu!“, ǌihov je komentar. Uverili su se da postoji jox jedan
niz qija su prva tri qlana zadati brojevi 2, 4, 8.

A mi postajemo svesni da smo, neoprezno, u formulaciji zadatka propustili
da naglasimo da tra¼imo jedno od mogu�ih rexeǌa, u stvari slede²a dva qlana
jednog od nizova qija su prva tri qlana zadata. Jasno je da je Perica, podstaknut
ranije ra±enim zadacima ovog tipa, u kojima je formula opxteg qlana sadr¼ala
linearne kombinacije prvog i drugog stepena broja n, naxao jednu od formula
opxteg qlana niza qija su prva tri qlana zadata i koja pripada toj klasi. Ona se
bitno razlikuje od prethodne, pripada klasi polinomnih formula dok prethodna
pripada klasi eksponencijalnih formula.

Tehniqki je tek malo zahtevniji slede²i primer; mogli bismo ga smestiti u
sedmi razred, na qas dodatne nastave, koji smo organizovali kroz rad u grupa-
ma od po tri uqenika. Jednostavnosti radi ponovi²emo ,,scenario“ iz primera
1 i opet zamisliti radoznalog Pericu i ǌegovu grupu u ulozi osporavateǉa
,,zvaniqnog“ rexeǌa.

Primer 2. Poznata su prva tri qlana niza 5, 10, 17, . . . . Koja su slede²a
dva qlana tog niza?

Posle kra²eg vremena ve²ina grupa ²e nam ponuditi brojeve 23 i 35 kao
slede²a dva qlana niza a formulu an = n2 +2(n+1) kao formulu opxteg qlana.
Ali, Perica kao Perica, uz pomo² svoje grupe saopxtava nam brojeve 28 i 47
kao slede²a dva qlana niza i formulu pn = 2n + 3n. Uveravamo se da su i jedni
i drugi u pravu.

Situacija se ponavǉa; imamo dve razliqite formule opxteg qlana za dva
razliqita niza qija su prva tri qlana zadati brojevi. I ovog puta, da bismo iz-
begli nesporazume, moramo tra¼iti jedan od mogu�ih parova slede²a dva qlana
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ili jedno od pravila opxteg qlana niza qija su prva tri qlana zadata. Jasno
je da se na prva tri zadata qlana niza ograniqavamo iskǉuqivo zbog mogu²ih
tehniqkih texko²a.

Iza±imo na trenutak iz odeǉeǌa. Malo matematiqkog aparata koji sledi
potvrdi²e da nas pitaǌe odre±enosti formule opxteg qlana sa zadatih prvih
nekoliko, na primer k, qlanova niza, vodi do opxteg problema nala¼eǌa inter-
polacione funkcije iz izabrane klase funkcija, koja ,,prolazi“ kroz zadatih k
qvorova.

Zadato je prvih k qlanova niza a1, a2, a3, . . . , ak. Neka je

F (x; p1, p2, p3, . . . , pk)

funkcija promenǉive x koja pripada izabranoj klasi funkcija i zavisi od k
realnih parametara. Ako je, na primer, izabrana klasa funkcija klasa polinoma,
ima²emo klasu polinoma (k − 1)-vog stepena p1x

k−1 + p2x
k−2 + · · ·+ pk−1x + pk.

Onda nam svako rexeǌe (p1, p2, . . . , pk) sistema jednaqina sa k nepoznatih

F (1; p1, p2, . . . , pk) = a1, F (2; p1, p2, . . . , pk) = a2, . . . , , F (k; p1, p2, . . . , pk) = ak

(∗)
daje formulu opxteg qlana an = F (n; p1, p2, . . . , pk), koja ispuǌava zadate uslove
(prvih k qlanova tog niza poklapa se sa zadatim). Pomo²u dobijene formule
mo¼emo izraqunati po ¼eǉi mnogo ǌegovih daǉih qlanova.

Ako problem ,,smestimo“ u koordinatni sistem xOy, uoqavamo da, u stvari,
me±u graficima funkcija iz klase y = F (x; p1, p2, . . . , pk) tra¼imo onu (one) koja
prolazi kroz ,,qvorove interpolacije“, taqke T1(1, a1), T2(2, a2), . . . , Tk(k, ak).

Ako se opredelimo za klasu polinoma, xto je najqex²i sluqaj, sistem (∗)
bio sistem linearnih jednaqina

p1 + p2 + · · ·+ pk = a1, p12k−1 + p22k−2 + · · ·+ pk−12 + pk = a2, . . . ,

p1k
k−1 + p2k

k−2 + · · ·+ pk−1k + pk = ak.

Ovo je ,,kvadratni“ sistem linearnih jednaqina; ǌegova je determinanta poznata
Van der Mondova determinanta i razliqita je od 0, pa sistem ima jedinstve-
no rexeǌe. Na²i to rexeǌe mo¼emo koriste²i se Kramerovim pravilom ili
na neki drugi naqin. Drugi, nama prihvatǉiviji, postupak je formiraǌe La-
gran¼evog interpolacionog polinoma sa zadatih k qvorova (1, a1), (2, a2), . . . ,
(k, ak) (videti, na primer, [2]). Na poznati naqin nalazimo, neposredno,

an =
(n− 2)(n− 3) · · · (n− k)
(1− 2)(1− 3) · · · (1− k)

a1 +
(n− 1)(n− 3) · · · (n− k)
(2− 1)(2− 3) · · · (2− k)

a2 + · · ·+

+
(n− 1)(n− 2) · · · (n− (k − 1))
(k − 1)(k − 2) · · · (k − (k − 1))

ak = Lk−1(n).

Vidimo da je zaista Lk−1(1) = a1, Lk−1(2) = a2, . . . , Lk−1(k) = ak. Na±enim
polinomom mo¼emo se poslu¼iti da formiramo nove formule opxteg qlana niza
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sa zahtevanim svojstvima. Neka je f(n) proizvoǉna funkcija definisana za sve
n ∈ N. Onda je formulom

bn = Lk−1(n) + (n− 1)(n− 2) · · · (n− (k − 1))(n− k) f(n)

zadat niz (bn)n∈N za koji je ispuǌeno: b1 = a1, b2 = a2, . . . , bk = ak, a vre-
dnosti ǌegovih daǉih qlanova zavise od f . Dakle, izborom funkcije f mo¼emo
formirati razliqite nizove, qijih je prvih k qlanova zadato.

Tehniqki je zahtevnije raditi s drugim klasama funkcija. Ako su nam zada-
ta, na primer, prva qetiri qlana niza, mo¼emo tra¼iti da bude

an = (pn + q) 2rn+s, n ∈ N,

pri qemu smo neophodna qetiri parametra oznaqili sa p, q, r, s. Jasno je da se, u
opxtem sluqaju, matematiqkim aparatom ovog tipa ne²emo baviti u OX.

Vratimo se u odeǉeǌe. Primeri koje smo, uz odgovaraju²e komentare, ura-
dili, kao i malo formalnija teorijska osnova koju smo kroz prethodne redove
prezentirali, uverili su nas da, prilikom formulisaǌa zadataka u kojima, na
osnovu zadatih nekoliko poqetnih qlanova niza, tra¼imo ,,pravilo nizaǌa“ ili
nekoliko qlanova koji posle ǌih slede, moramo tra¼iti jedno od pravila ili
tra¼iti od uqenika ,,koji bi brojevi mogli biti“ daǉa dva (tri, qetiri, . . . )
qlana tog niza.

Dok zadaci u kojima se tra¼i nekoliko prvih qlanova niza na osnovu za-
date formule opxteg qlana niza ne zahtevaju poseban komentar na ovome mestu,
ve²ina zadataka u kojima je zadato prvih nekoliko qlanova niza i tra¼i se for-
mula opxteg qlana, koje nalazimo u u­beniqkim materijalima za peti razred
OX, odnosi se na zadatke u kojima je jedna od mogu²ih formula opxteg qlana
oblika an = kn + c, n ∈ N (ili n ∈ N0). U tim sluqajevima porodica grafika
funkcija koje pripadaju dvoparametarskoj porodici y = kx + c (realni parame-
tri su k i c) predstavǉa porodicu pravih linija i za nala¼eǌe odre±ene prave
dovoǉno je zadati dva uslova, dakle, dovoǉno je zadati dva ,,qvora“, xto znaqi
dva poqetna qlana niza. A ako je zadato vixe poqetnih qlanova tog niza, mo-
ramo voditi raquna o tome da svi qvorovi pripadaju toj pravoj, kolinearni su.
Imaju²i u vidu ranije reqeno, mo¼emo oqekivati da se u odeǉeǌu pojavi i neka
druga formula opxteg qlana. S druge strane, ako zadati qvorovi nisu koline-
arni, formula opxteg qlana ne mo¼e biti linearna po n. U takvim sluqajevima,
tra¼imo je u klasama formula tipa: an = pn2 + qn + r, an = pn3 + qn2 + rn + s,
. . . , an = p2n + q, an = (pn + q)2n, an = 3pn+q + rn + s, . . . .

Neka je u koordinatnoj ravni xOy prava p zadata jednaqinom y = kx + s.
Znamo da dve taqke A(a, α), B(b, β) pripadaju toj pravoj ako i samo ako je

k =
β − α

b− a
i s = α− a

β − α

b− a
. (∗∗)

Ako toj pravoj pripada vixe od dve taqke, onda za svake dve od ǌih va¼i (∗∗).
Posmatrajmo niz (an)n∈N i ǌemu pripadaju²e qvorove T1(1, a1), T2(2, a2),

T3(3, a3), . . . . U koordinatnoj ravni xOy ti ²e qvorovi biti kolinearni ako i
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samo postoje takvi k i s da za svaka dva od ǌih va¼i (∗∗). Jasno je da uslov ,,svaka
dva od ǌih“ mo¼emo zameniti sa ,,svaka dva uzastopna od ǌih“. Za svaka dva
uzastopna qlana niza am i am+1, m ∈ N i ǌima odgovaraju²e qvorove Tm(m, am)
i Tm+1(m + 1, am+1) va¼i da je b− a = m + 1−m = 1, pa ²e za ǌih va¼iti da
je za svako m ∈ N

k = am+1 − am i s = am = m− (am+1 − am) = am −mk.

Prva od ovih jednakosti nam pokazuje da je razlika svaka dva uzastopna qlana
takvog niza stalna i jednaka k, a iz druge jednakosti ,,qitamo“ formulu opxteg
qlana an = nk + s.

Primer 3. Prva qetiri qlana niza (an)n∈N su brojevi 9, 16, 23, 30. Na²i
jednu od formula opxteg qlana takvog niza.

Uoqavamo da za navedene qlanove niza va¼i da je svaki slede²i qlan ve²i
za 7 od prethodnog qlana niza. Na osnovu malopre dokazanog, to znaqi da su
ǌima odre±eni ,,qvorovi“, taqke T1(1, 9), T2(2, 16), T3(3, 23), T4(4, 30), koli-
nearni (pripadaju jednoj pravoj). Ako je jednaqina te prave y = kx + s, na-
lazimo da je k = 7 = 16 − 9 ( = 23 − 16 = 30 − 23), a s = 2 = 9 − 17
( = 16− 2 · 7 = 23− 3 · 7 = 30− 4 · 7) Na taj naqin smo naxli jednu od formula
opxteg qlana tog niza, an = 7n + 2.

U osmom razredu, na qasu dodatne nastave, uqenici ²e se, uvereni smo u to,
uspexno ,,izboriti“ i sa zadacima u kojima pravilo za nala¼eǌe opxteg qlana
niza ne mo¼e biti linearno po n. Primer 4 pokazuje kako to mo¼e izgledati u
sluqaju da ga tra¼imo u obliku polinoma, pri qemu je rexavaǌe sistema jedna-
qina tek mala tehniqka texko²a.

Primer 4. Prva qetiri qlana niza (An)n∈N su brojevi 1, 7, 25, 61. Koja
dva broja mogu biti slede²a dva qlana takvog niza? Na²i jednu od formula
opxteg qlana takvog niza.

Uveravamo se da razlike uzastopnih qlanova niza nisu jednake, xto znaqi da
ǌegovi qvorovi nisu kolinearni, pa formulu opxteg qlana ne mo¼emo tra¼iti u
obliku An = kn+s. Potra¼imo je u obliku polinoma stepena ve²eg od 1. Budu²i
da su nam zadata prva qetiri qlana niza, polinom treba da bude stepena ve²eg
ili jednakog tri, jer takav polinom sadr¼i bar qetiri koeficijenta (qetiri
parametra). Dakle, neka je

An = an3 + bn2 + cn + d, n ∈ N.

Koeficijenti (parametri) a, b, c, d zadovoǉavaju jednaqine

a + b + c + d = 1, 8a + 4b + 2c + d = 7,

27a + 9b + 3c + d = 25, 64a + 16b + 4c + d = 61.

Rexavaǌem ovog sistema jednaqina nalazimo da je a = 1, b = 0, c = −1, d = 1,
pa je jedna od formula opxteg qlana niza qija su prva qetiri qlana 1, 7, 25, 61

An = n3 − n + 1, n ∈ N.

Jasno je da su, u tom sluqaju, slede²a dva qlana niza brojevi 121 i 211.
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Napomena. Naravno, mo¼e se desiti da zadata prva qetiri qlana niza qiji
qvorovi nisu kolinearni, pripadaju nizu qija je formula opxteg qlana polinom
drugog stepena; u takvom sluqaju bismo dobili da je a = 0. To nipoxto, imaju²i
u vidu ranije naglaxenu qiǌenicu da formula opxteg qlana nije jednoznaqno
odre±ena s ǌegovih nekoliko poqetnih qlanova, ne iskǉuquje mogu²nost da, qak
i u klasi polinoma, postoje polinomi stepena ve²eg od tri koji bi, u funkciji
formule opxteg qlana, generisali niz qija se prva qetiri qlana poklapaju sa
zadatim brojevima. To nije tema ovog priloga.

Za naxe potrebe, ali ne i za rad u odeǉeǌu, i u ovom sluqaju smo se mogli
koristiti Lagran¼evom metodom. Ona bi nam tu formulu dala neposredno:

An =
(n− 2)(n− 3)(n− 4)
(1− 2)(1− 3)(1− 4)

· 1 +
(n− 1)(n− 3)(n− 4)
(2− 1)(2− 3)(2− 4)

· 7+

+
(n− 1)(n− 2)(n− 4)
(3− 1)(3− 2)(3− 4)

· 25 +
(n− 1)(n− 2)(n− 3)
(4− 1)(4− 2)(4− 3)

· 61.
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