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BERNULIJEVA NEJEDNAKOST, ǋENE GENERALIZACIJE
I PRIMJENA

Xvajcarska porodica Bernuli (Bernoulli) jedinstven je fenomen u svijetu;
qak dvanaest qlanova ove porodice se bavilo matematikom, fizikom i hemijom.
Kada je u pitaǌu matematika, najve²i doprinos ovoj nauci su dali Jakob (Ja-
cob, 1654–1705), ǌegov brat Johan (Johann, 1667–1748) kao i Johanov sin Daniel
(Daniel, 1700–1782). Prva dvojica su obilno zadu¼ili matematiku, dok je Da-
niel najve²i doprinos dao u fizici (hidrodinamici). Jakob je dao znaqajne
rezultat u teoriji vjerovatno²e, napisao je djelo Ars conjectandi, ta kǌiga mu
je publikovana posthumno 1713. godine. U ǌoj se nalaze dijelovi koji se odnose
na Bernulijeve brojeve i Bernulijevu teoremu. ǋemu se pripisuje i poznata
Bernulijeva nejednakost (izreqena i dokazana 1689. godine) o kojoj ²e ovdje biti
govora, a koja ima veliku primjenu u raznim oblastima matematike.

Najprije ²emo dati ovu nejednakost u najpoznatijem ǌenom obliku koji glasi:

Teorema 1. Ako je x > −1 i ako je n prirodan broj, tada je

(1 + x)n > 1 + nx. (1)

Dokaz. Dokaz ²emo izvesti pomo²u matematiqke indukcije.

Ako je n = 1, tada (1) postaje jednakost, tj. nejednakost je taqna za n = 1.
Pretpostavimo da (1) va¼i za n = k > 1, tj. da je za x > −1:

(1 + x)k > 1 + kx. (2)

Mno¼e²i relaciju (2) sa 1 + x > 0, dobijamo:

(1 + x)k+1 > (1 + x)(1 + kx) = 1 + (k + 1)x + kx2,

odakle je
(1 + x)k+1 > 1 + (k + 1)x.

Ovim je zavrxen induktivni dokaz.

Napomena. Oqigledno u (1) va¼i jednakost i za x = 0. U literaturi se ova
nejednakost mo¼e na²i zapisana i u obliku:

(1 + x)n > 1 + nx, −1 < x 6= 0, n ∈ N, n > 2.

Sada ²emo dokazati jednu teoremu koriste²i nejednakost (1), tj. teoremu 1.
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Teorema 2. Ako je n = 2, 3, . . . i −1 < x <
1

n− 1
, tada je

(1 + x)n 6 1 +
nx

1 + (1− n)x
, (3)

sa jednakox�u ako i samo ako je x = 0.

Dokaz. Primjeǌuju²i nejednakost (1) na
(

1− x

1 + x

)n

, dobijamo:

(
1− x

1 + x

)n

> 1− n · x

1 + x
, (4)

gdje je n = 1, 2, . . . i
−x

1 + x
> −1 jer je x > −1. Me±utim, 1 − x

1 + x
=

1
1 + x

,

tako da je (4) ekvivalentno sa
1

(1 + x)n
> 1 + x− nx

1 + x
.

Ako je 1 + x− nx > 0 i n = 2, 3, . . . (tj. x <
1

n− 1
), tada je

(1 + x)n 6 1 + x

1 + x− nx
= 1 +

nx

1 + (1− n)x
.

Ovim je dokazana nejednakost (3).
Sada ²emo dati jednu generalizaciju nejednakosti (1).

Teorema 3. Ako je svaki od realnih brojeva x1, x2, . . . , xn ve�i od −1 i
ako su ili svi pozitivni ili svi negativni, tada je

(1 + x1)(1 + x2) · . . . · (1 + xn) > 1 + x1 + x2 + · · ·+ xn. (5)

Dokaz. Za n = 2 nejednakost je taqna jer va¼i

(1 + x1)(1 + x2) = 1 + x1 + x2 + x1x2 > 1 + x1 + x2.

Pretpostavimo da (5) va¼i za neko n > 2. Tada za n + 1 imamo

(1 + x1)(1 + x2) · . . . · (1 + xn)(1 + xn+1) > (1 + x1 + x2 + · · ·+ xn)(1 + xn+1)

> 1 + x1 + x2 + · · ·+ xn + xn+1 + xn+1(x1 + x2 + · · ·+ xn)
> 1 + x1 + x2 + · · ·+ xn + xn+1.

Ovim je dokaz matematiqkom indukcijom zavrxen, tj. nejednakost (5) je taqna.
Naravno, nejednakost (1) dobijamo iz (5) za x1 = x2 = · · · = xn = x.

Dokaza²emo sada sǉede²u generalizaciju Bernulijeve nejednakosti (1).

Teorema 4. Neka su x, a realni brojevi, x > −1 i 0 < a < 1. Tada je

(1 + x)a 6 1 + ax. (6)

Ako je x > −1 i a < 0 ili a > 1, tada je

(1 + x)a > 1 + ax. (7)

Jednakost u (6) i (7) va�i samo u sluqaju kada je x = 0.
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Dokaz. Razmotrimo najpre sluqaj kada je a racionalan broj, i to pozitivan
pravi razlomak. Neka je a =

m

n
, gdje su m i n prirodni brojevi i pri tome je

m < n. Tada na osnovu nejednakosti izme±u aritmetiqke i geometrijske sredine
n pozitivnih brojeva slijedi

(1 + x)a = (1 + x)
m
n = n

√
(1 + x)m · 1n−m

6 (1 + x) + · · ·+ (1 + x) + 1 + · · ·+ 1
n

=
m(1 + x) + n−m

n
=

n + mx

n
= 1 +

m

n
x = 1 + ax,

tj. (1 + x)a 6 1 + ax. Jednakosti va¼i ako su sabirci u nejednakosti A > G
jednaki, tj. ako je 1 + x = 1, tj. x = 0. Za x 6= 0, va¼i (1 + x)a < 1 + ax. Ovim je
dokazana nejednakost (6) u sluqaju kada je a (0 < a < 1) racionalan broj.

Neka je sada a, 0 < a < 1 iracionalan broj. Neka je r1, r2, . . . , rn, . . . jedan
niz pravih razlomaka koji te¼i ka a. Iz nejednakosti

(1 + x)rn 6 1 + rnx, x > −1, n = 1, 2, . . . ,

koju smo gore dokazali (u sluqaju kada je eksponent racionalan broj), slijedi

(1 + x)a = lim
n→∞

(1 + x)rn 6 lim
n→∞

(1 + rnx) = 1 + ax.

Ovim je nejednakost (6) tako±e dokazana za iracionalne vrijednosti a. Preostaje
nam jox da doka¼emo da za x 6= 0 i 0 < a < 1 va¼i (1 + x)a < 1 + ax, tj. da za
x 6= 0 u (6) ne va¼i znak jednakosti.

U svrhu ovog dokaza izaberimo jedan racionalan broj r, takav da je a < r < 1.
Oqigledno va¼i

(1 + x)a =
[
(1 + x)

a
r

]r

.

Zbog 0 <
a

r
< 1, na osnovu gore dokazanog va¼i (1 + x)

a
r 6 1 +

a

r
x. Sǉedi da je

(1 + x)a 6
(
1 +

a

r
x
)r

. Za x 6= 0 va¼i
(
1 +

a

r
x
)r

< 1 + r · a

r
x = 1 + ax, odakle

(1 + x)a < 1 + ax.

Ovim je nejednakost (6) u potpunosti dokazana.
Pre±imo sada na dokaz nejednakosti (7). Neka je a > 1. Ako je 1 + ax < 0

(to je mogu²e; npr. ako je a = 4, x = −1
2
, tada je 1 + ax = −1 < 0), tada je

nejednakost (7) taqna jer je tada ǌena lijeva strana nenegativna, a desna strana
je negativna. Ako je 1 + ax > 0, tj. ax > −1, tada na osnovu nejednakosti (6)
slijedi

(1 + ax)
1
a 6 1 +

1
a
· ax = 1 + x,

pri qemu jednakost va¼i samo u sluqaju kada je x = 0. Ako stepenujemo obje
strane gorǌe nejednakosti sa a, dobijamo

1 + ax 6 (1 + x)a.
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Neka je sada a < 0. Ako je 1 + ax < 0, tada nejednakost (7) oqigledno va¼i.
Ako je 1+ax > 0, izaberimo jedan prirodan broj n tako da je −a

n
< 1. Na osnovu

nejednakosti (6) va¼i

(1 + x)
− a

n 6 1− a

n
x,

a odavde

(1 + x)
a
n > 1

1− a

n
x

> 1 +
a

n
x

(posǉedǌa nejednakost je taqna zbog 1 > 1 − a2

n2
x2). Stepenovaǌem posǉedǌe

nejednakost sa n dobijamo

(1 + x)a >
(
1 +

a

n
x
)a

> 1 + n · a

n
x = 1 + ax,

a ovo je nejednakost (7). Primjetimo da je jednakost mogu²a ako je x = 0. Ovim
je teorema u potpunosti dokazana.

Va¼i sǉede²a generalizacija nejednakosti (6) i (7).

Teorema 5. Vrijede nejednakosti
n∏

i=1

(1 + xi)pi > 1 +
n∑

i=1

pixi, (8)

ako {p1, p2, . . . , pn} ⊂ (−∞, 0) ili {p1, p2, . . . , pn} ⊂ (1,+∞), te {x1, x2, . . . , xn}
⊂ (0, +∞) ili {x1, x2, . . . , xn} ⊂ (−1, 0), n > 1. Jednakost va�i u sluqaju
x1 = x2 = · · · = xn.

n∏

i=1

(1 + xi)pi 6 1 +
n∑

i=1

pixi, (9)

ako {p1, p2, . . . , pn} ⊂ (0, 1) te {x1, x2, . . . , xn} ⊂ (0,+∞) ili {x1, x2, . . . , xn} ⊂
(−1, 0), n > 1. Jednakost va�i u sluqaju x1 = x2 = · · · = xn.

Za dokaze ovih nejednakosti treba koristiti nejednakosti (6) i (7). Prepu-
xtamo ih qitaocima ovog qlanka.

Sada ²emo pokazati kako se pomo²u nejednakosti (6) i (7) efikasno mo¼e
izvrxiti procjena nekih odre±enih integrala.

Primjer 1. Neka je f : [1, 2] → (0,+∞) integrabilna funkcija. Ako je∫ 2

1
f2(x) dx 6 2, dokazati da va¼i nejednakost

∫ 2

1

[1 + f(x)]
1
x dx 6 2.

Rjexeǌe. Na osnovu Bernulijeve nejednakosti (6) (zbog 1 6 x 6 2) dobijamo

[1 + f(x)]
1
x 6 1 +

1
x

f(x),
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a sada na osnovu nejednakosti Koxi-Buǌakovski-Xvarca (Cauchy-Buniakowsky-
Schwarz):

∫ 2

1

[1 + f(x)]
1
x dx 6

∫ 2

1

[
1 +

1
x

f(x)
]

dx =
∫ 2

1

dx +
∫ 2

1

1
x

f(x) dx

6 1 +

√∫ 2

1

1
x2

dx ·
∫ 2

1

f2(x) dx 6 1 +

√
1
2
· 2 = 2.

Primjer 2. Dokazati da va¼i nejednakost

4
3

6
∫ 1

0

ex2
dx 6 e + 2

3
.

Rjexeǌe. Po²i ²emo od poznate nejednakosti et > t + 1, t > 0. Za t = x2

dobijamo
ex2 > x2 + 1. (∗)

Sada na osnovu Bernulijeve nejednakosti (6) (ovdje je x ∈ [0, 1]), dobijamo:

ex2
= [1 + (e− 1)]x

2 6 1 + (e− 1)x2, x ∈ [0, 1].

Sada imamo zbog (∗):
x2 + 1 6 ex2 6 1 + (e− 1)x2, x ∈ [0, 1],

a odavde nakon integracije:
∫ 1

0

(x2 + 1) dx 6
∫ 1

0

ex2
dx 6

∫ 1

0

[1 + (e− 1)x2] dx,

odnosno
4
3

6
∫ 1

0

ex2
dx 6 1 +

e− 1
3

=
e + 2

3
.
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