
ZADACI IZ MATEMATIKE

Alija Muminagi�

O JEDNOM INTERESANTNOM ZADATKU SA KORJENIMA

U ovom qlanku dajemo vixe rjexeǌa za poznati zadatak:
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Zadatak je iz kategorije ,,ni te¼ak, ni lak“ (ipak prije ,,te¼ak“), a nazva²emo
ga rutinksim, jer daje praksu za primjenu, samo za kub zbira i razlike dvaju
brojeva i raqunske operacije sa korjenima.

Rjexeǌe 1. Jednakot (1) ekvivalentna je s jednakox²u
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Dajemo dokaz ,,s lijeva na desno“ za jednakost (2):
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Ovo rjexeǌe je ,,tour de force“ (muqan posao), ali u nastavi su nekad i takva
rjexeǌa nu¼na.

Sigurno je da ²e se me±u uqeniqkim rjexeǌima na²i i ovakva:
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Rjexeǌe 2.
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xto je u odnosu na rjexeǌe 1 i lakxe i elegantnije.
Rjexeǌe 3. Neka je x = 3

√
2. Tada je data jednakost (1) ekvivalentna sa
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Sada je jox lakxe utvrditi da je za x = 3
√

2 (x3 = 2, x6 = 4), posǉedǌa jednakost
taqna, pa je taqna i ǌoj ekvivalentna jednakost (1).

Rjexeǌe 4. Desnu stranu u datoj jednakosti (1), uz korix²eǌe formula
a3 + b3 = (a + b)(a2 − ab + b2) i a3 − b3 = (a− b)(a2 + ab + b2), transformixemo
na ovaj naqin:
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Rjexeǌe 5. Stavimo da je x = 3
√

3
√

2− 1 i y = 3
√

2. Tada je y3 = 2 i
x = 3

√
y − 1. Sada imamo
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Konaqno, iz (5) i (6) slijedi
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xto je i trebalo dokazati.
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Sliqno dokazujemo da su taqne i sǉede²e jednakosti:
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Naslu²ujemo da va¼i

3

√
2n−1

9
− 3

√
2n

9
+

3

√
2n+1

9
=

3
√

3
√

23n−2 − 2n−1, n ∈ N. (7)

Dokaz. Tvr±eǌe (7) ²emo dokazati matematiqkom indukcijom. Imamo:

1◦ Za n = 1 tvr±eǌe je taqno (vidjeti prethodna rjexeǌa).

2◦ Neka je tvr±eǌe (7) taqno za neko n > 1. Mno¼e²i tu relaciju sa 3
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xto znaqi da tvr±eǌe (7) va¼i i za n + 1. Time je dokazano da (7) va¼i za sve
n ∈ N.

Rjexeǌa 4 i 5, kao i generalizacija, izvan rutine su i otvaraju mogu²nost
ulaska u kreativnost i originalnost.

Ako se neko od qitalaca zapitao kako dolazimo do racionalnih brojeva
1
9
, −2
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,
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u jednakosti (1), mo¼e da formulixe ovakav zadatak:

Odrediti racionalne brojeve a, b, c tako da je
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Tada je ovaj qlanak u potpunosti opravdao svoj ciǉ.
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