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NEKOLIKO NAQINA ZA IZRAQUNAVAǋE
JEDNOG POZNATOG ZBIRA

Read Euler, read Euler. He is
the master of us all.

P. S. Laplace

Svaki student druge godine matematike zna (ili bi bar trebalo da zna)

da je zbir reda
∞∑

n=1

1
n2

jednak
π2

6
. Na pitaǌe kako se do tog rezultata dolazi,

ve²ina ²e verovatno odgovoriti ,,pomo²u Furijeovih redova“, a neki ²e umeti da
to i precizno poka¼u (recimo, primeǌuju²i Parsevalovu jednakost na funkciju
f(x) = x na segmentu [−π, π]). Malo ǌih, me±utim, zna da to uradi i na neki
drugi naqin, kao i da nexto ka¼e o zanimǉivom istorijatu ovog problema. U
ovom qlanku ²emo zato navesti tri (od mnogih poznatih) naqina iraqunavaǌa
pomenutog zbira, poqevxi od originalnog Ojlerovog iz 1735. godine.

1. Kratak istorijat problema

Druga polovina XVII veka bila je vreme kada su matematiqari poqeli in-
tenzivnije da prouqavaju beskonaqne redove. Najaktivniji u tom smislu bio je
Jakob Bernuli (Jakob Bernoulli, 1654–1705), koji je prvi korektno dokazao da

harmonijski red
∞∑

n=1

1
n

divergira. Mo¼da je zanimǉivo pomenuti da je za to

koristio nejednakost

1
n

+
1

n + 1
+

1
n + 2

+ · · ·+ 1
n2

> 1, n ∈ N,

umesto nejednakosti

1
2n + 1

+
1

2n + 2
+ · · ·+ 1

2n+1
>

1
2
, n ∈ N,

koja se obiqno danas navodi u u­benicima.
Bernuli je odmah postavio i pitaǌe o konvergenciji opxtijih redova oblika

∞∑
n=1

1
np

i, naravno, lako pokazao da za p = 2 takav red konvergira, koriste²i

nejednakost
1
n2

<
1

(n− 1)n
, n > 1.
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Ujedno je dobio i da je 2 oqigledno gorǌe ograniqeǌe za vrednost odgovaraju²eg
zbira. Svi pokuxaji, me±utim, da na±e i taqnu vrednost zbira ostali su bez-
uspexni. Frustriran, posle du¼eg bavǉeǌa ovim problemom, u svom poznatom
delu Tractatus seriebus infinitis (,,Traktat o beskonaqnim redovima“) iz 1689. go-
dine, napisao je: ,,Ako bilo ko prona±e i javi nam ovo xto je izmaklo svim naxim
naporima, velika ²e biti naxa zahvalnost“ [4]. Me±utim, niko od ǌegovih po-
znanika (ukǉuquju²i Lajbnica (Gottfried Wilhelm Leibniz, 1646–1716)) nije mu
poslao rexeǌe. Tako je Jakob ovaj problem, zajedno sa katedrom za matematiku
u Bazelu, predao u nasle±e mla±em bratu Johanu (Johann Bernoulli, 1667–1748),
a sam zadatak je postao poznat kao ,,Bazelski problem“.

Me±utim, ni Johan nije bio uspexniji od svog brata, te je problem morao
da saqeka ǌegovog sugra±anina i, svakako, najboǉeg uqenika, Ojlera (Leonhard
Euler, 1707–1783). Mladi Ojler je verovatno bio privuqen mogu²nox²u da rexi
zadatak koji nosi ime ǌegovog rodnog grada, te je vrlo rano poqeo sa pokuxajima.
Jedan od prvih problema sa kojima se susreo bila je qiǌenica da navedeni red
vrlo sporo konvergira, te su male xanse da se direktnim raqunom odredi ǌegova
pribli¼na vrednost sa iole razumnom taqnox²u (zbir qak prvih hiǉadu qlanova
daje samo prve dve taqne decimale zbira (1,64)!). Prvi korak koji je Ojler
preduzeo je zato bio da ovaj zbir zameni nekim koji br¼e konvergira. To mu je
uspelo 1731. godine kada je pokazao da va¼i jednakost

(1)
∞∑

n=1

1
n2

= ln2 2 + 2
∞∑

n=1

1
n22n

.

Naime, kod posledǌeg zbira bilo je dovoǉno sabrati samo 14 qlanova da bi se
dobilo 6 taqnih decimala (1,644934). Smatra se da je Ojler izraqunao oko 20
decimala rezultata i da ga je to navelo da nasluti taqan odgovor. Rezultat je
objavio 1735. godine i jasno je da je bio veoma zadovoǉan zbog toga, jer je rexeǌe
propratio reqima [4, 6]:

,,Sada sam, protivno svim oqekivaǌima, naxao elegantan izraz za
zbir reda 1+ 1

4 + 1
9 + 1

16 + itd, koji je povezan sa kvadraturom kruga . . .
Naxao sam da je xestostruka vrednost tog zbira jednaka kvdratu obima
kruga preqnika 1.“

ǋegov mentor, Johan Bernuli, napisao je: Utinam Frater supererstes effet!
(,,Kad bi samo moj brat bio ¼iv!“) [4].

Dokaz koji je Ojler naveo (mada u suxtini taqan) svakako ne bi mogao da
zadovoǉi savremene zahteve strogosti (navex²emo taj dokaz kao ilustraciju u
narednom odeǉku). Qak i u XVIII veku on je izazivao podozreǌe, te su mnogi,
ukǉuquju²i Johanovog sina i Ojlerovog dobrog prijateǉa Danijela Bernulija
(Daniel Bernoulli, 1700–1782), ne dovode²i u sumǌu sam rezultat, tra¼ili ko-
rektniji dokaz. Odgovor je dao sam Ojler, objavǉuju²i novi dokaz, koji se i
danas (uz razjaxǌeǌe nekih detaǉa) mo¼e prihvatiti kao ispravan. I taj dokaz
²emo navesti u narednom odeǉku.

U narednim vekovima na±eno je jox mnogo dokaza ove va¼ne qiǌenice, ukǉu-
quju²i pomenuti koji koristi teoriju Furijeovih redova. Ovde ²emo prikazati
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samo jox jedan, qiji su autori bra²a Jaglom, i koji je potpuno elementaran.
Zainteresovani qitalac mo¼e na²i pregled drugih, maǌe ili vixe elementarnih,
dokaza u qlanku [7].

Sam Ojler se, naravno, nije zaustavio na tome, ve² je nastavio da ispituje

redove oblika
∞∑

n=1

1
np

za p ∈ N, qiji zbirovi su kasnije postali poznati kao

vrednosti ζ(p) Rimanove zeta-funkcije za prirodne vrednosti argumenta. Naxao
je naqin za odre±ivaǌe tih zbirova za parne vrednosti eksponenta p,

ζ(2q) =
∞∑

n=1

1
n2q

= (−1)q+1 (2π)2q

2(2q)!
·B2q,

gde su Bernulijevi brojevi B2q odre±eni pomo²u razvoja

x

2
cth

x

2
=

x

2
ex + 1
ex − 1

= 1 +
∞∑

q=1

B2q

(2q)!
x2q.

Na primer, izraqunao je i objavio 1744. godine da va¼i:

∞∑
n=1

1
n4

=
π4

90
,

∞∑
n=1

1
n6

=
π6

945
, . . . ,

∞∑
n=1

1
n26

=
224

27!
(76977927π26).

Za neparne vrednosti eksponenta p, me±utim, nije mogao skoro nixta da ka¼e, a
takvo je staǌe stvari praktiqno do danas. Skoro jedini konkretan rezultat u
tom smislu objavio je 1978. godine Ro¼e Aperi (Roger Apéry, 1916–1994) kada

je dokazao da je ζ(3) =
∞∑

n=1

1
n3

iracionalan broj.

2. Tri dokaza Ojlerovog rezultata

2.1. Prvi Ojlerov dokaz [4, 6].

Ako je P (x) polinom n-tog stepena qiji su koreni a1, a2, . . . , an razliqiti
od nule, i ako je pritom P (0) = 1, tada se P (x) mo¼e predstaviti u obliku

P (x) =
(

1− x

a1

)(
1− x

a2

)
· · ·

(
1− x

an

)
.

Ojler je uzeo kao oqiglednu qiǌenicu da se ovakav zakǉuqak mo¼e primeniti i na

zbir stepenog reda f(x) =
∞∑

n=0
bnxn koji ima beskonaqno (mi bismo danas rekli

prebrojivo mnogo) nula a1, a2, . . . (razliqitih od nule). Specijalno, mo¼emo za
f(x) da uzmemo funkciju

f(x) =
∞∑

n=0

(−1)n x2n

(2n + 1)!
=

{ sin x

x
, x 6= 0,

1, x = 0,



42 Z. Kadelburg

qije su sve nule oblika ak = kπ, k ∈ Z \ {0}. Dobijamo da va¼i jednakost
∞∑

n=0

(−1)n x2n

(2n + 1)!
=

∞∏

k=1

(
1− x

kπ

) (
1− x

−kπ

)
=

∞∏

k=1

(
1− x2

k2π2

)
.

Ako zamislimo da smo izmno¼ili sve qlanove posledǌeg beskonaqnog proizvoda
i rezultat sredili po stepenima od x, mo¼emo ponovo da primenimo analogiju
sa polinomima, te da izjednaqimo izraze uz odgovaraju²e stepene promenǉive na
obema stranama jednakosti. Ve² izjednaqavaǌe koeficijenata uz x2 daje nam

1
3!

=
1
π2

∞∑
n=1

1
n2

,

xto i jeste tra¼eni rezultat
∞∑

n=1

1
n2

=
π2

6
.

Prepuxtamo qitaocima da dopune ovaj Ojlerov dokaz tako da postane strog
u danaxǌem smislu reqi. Posebno, Ojlerov prikaz sinusa u obliku beskona-
qnog proizvoda koji je ovde korix²en obiqno se u savremenim kursevima analize
tako±e dokazuje pomo²u Furijeovih redova (v. npr. [2, 5]).

2.2. Drugi Ojlerov dokaz [4, 6].
U ovom dokazu koristi²emo slede²e tri qiǌenice qije je izvo±eǌe najqex²e

ukǉuqeno u ve¼be iz Analize I i II (ili bi to bez problema moglo biti).

(1)
∫ x

0

arcsin t√
1− t2

dt =
1
2

arcsin2 x.

(2) arcsin t = t +
∞∑

n=1

(2n− 1)!!
(2n)!!

· t2n+1

2n + 1
, −1 6 t 6 1.

(3)
∫ 1

0

tn+2

√
1− t2

dt =
n + 1
n + 2

∫ 1

0

tn√
1− t2

dt za n ∈ N (ovo se naravno izvodi par-

cijalnom integracijom).
Po±imo od jednakosti (1) i zamenimo u ǌoj x = 1. Dobijamo da je

π2

8
=

∫ 1

0

arcsin t√
1− t2

dt.

Zamenimo sada arcsin t odgovaraju²im stepenim redom iz jednakosti (2), pa pro-
menimo poredak integrala i sume. (Opravdanost takvog postupka Ojler, naravno,
nije komentarisao. Ona nije sasvim trivijalna jer integral ima singularitet u
gorǌoj granici. Ipak, nije problem dati odgovaraju²e obrazlo¼eǌe, na primer,
pomo²u Dinijevog pravila.) Dobija se

π2

8
=

∫ 1

0

{
t√

1− t2
+

∞∑
n=1

(2n− 1)!!
(2n + 1)(2n)!!

· t2n+1

√
1− t2

}
dt

= 1 +
∞∑

n=1

(2n− 1)!!
(2n + 1)(2n)!!

∫ 1

0

t2n+1

√
1− t2

dt.
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Sada, koriste²i rekurentnu vezu (3) i oqigledan rezultat
∫ 1

0

t√
1− t2

dt = 1,
lako nalazimo da je

∫ 1

0

t2n+1

√
1− t2

dt =
(2n)!!

(2n + 1)!!
, n ∈ N,

pa zamenom u prethodno dobijamo da je

π2

8
= 1 +

∞∑
n=1

(2n− 1)!!
(2n + 1)(2n)!!

· (2n)!!
(2n + 1)!!

=
∞∑

n=0

1
(2n + 1)2

.

Daǉe se lakom transformacijom dobija
∞∑

n=1

1
n2

=
∞∑

n=0

1
(2n + 1)2

+
∞∑

n=1

1
(2n)2

=
π2

8
+

1
4

∞∑
n=1

1
n2

,

xto je ekvivalentno jednakosti koja se dokazuje.

2.3. Dokaz A. M. Jagloma i I. M. Jagloma [5, 8].
Dokaza²emo najpre slede²e pomo²no tvr±eǌe.
Lema. Za n ∈ N va¼i

n∑

k=1

ctg2 kπ

2n + 1
=

n(2n− 1)
3

.

Dokaz. Na osnovu Muavrove formule dobijamo da je

cos nθ + i sin nθ = (cos θ + i sin θ)n = sinn θ(ctg θ + i)n

= sinn θ

n∑

k=0

(
n

k

)
ik ctgn−k θ.

Izjednaqavaǌe imaginarnih delova daje

sin nθ = sinn θ

{(
n

1

)
ctgn−1 θ −

(
n

3

)
ctgn−3 θ +

(
n

5

)
ctgn−5 θ − · · ·

}
.

Specijalno, ako je n = 2m + 1 neparan broj, prethodna relacija dobija oblik

sin(2m + 1)θ = sin2m+1 θPm(ctg2 θ), 0 < θ <
π

2
,

gde je Pm polinom stepena m odre±en sa

Pm(x) =
(

2m + 1
1

)
xm −

(
2m + 1

3

)
xm−1 +

(
2m + 1

5

)
xm−2 − · · ·+ (−1)m.

Kako je sin2m+1 θ 6= 0 za 0 < θ < π/2, a sin(2m + 1)θ se anulira u m razliqi-

tih taqaka θ =
kπ

2m + 1
, k = 1, 2, . . . , m, zakǉuqujemo da se Pm(x) anulira u m

razlqiith taqaka xk = ctg2 kπ

2m + 1
. Na osnovu Vijetovih pravila sledi

m∑

k=1

ctg2 kπ

2n + 1
=

m∑

k=1

xk =

(
2m+1

3

)
(
2m+1

1

) =
m(2m− 1)

3
.

xto je i trebalo dokazati.
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Pre±imo na dokaz osnovnog tvr±eǌa. Polaze²i od oqigledne nejednakosti

0 < sin x < x < tg x, 0 < x <
π

2
,

prelazom na reciproqne vrednosti i kvadriraǌem, dobijamo

ctg2 x <
1
x2

<
1

sin2 x
= 1 + ctg2 x, 0 < x <

π

2
.

Zameǌuju²i vrednosti x =
kπ

2n + 1
za k = 1, 2, . . . , n i sumiraju²i, dobijamo

n∑

k=1

ctg2 kπ

2n + 1
<

(2n + 1)2

π2

n∑

k=1

1
k2

< n +
n∑

k=1

ctg2 kπ

2n + 1
.

Na osnovu dokazane leme, ovo se svodi na

n(2n− 1)
3

<
(2n + 1)2

π2

n∑

k=1

1
k2

< n +
n(2n− 1)

3
.

Ako sada pomno¼imo ovu dvostruku nejednakost sa
π2

4n2
i pustimo da n →∞, na

osnovu teoreme o tri niza dobijamo ¼eǉenu formulu
∞∑

k=1

1
k2

=
π2

6
.

Za ǉubiteǉe matematiqkih kurioziteta navedimo na kraju i slede²e.

Kao xto je ve² reqeno, red
∞∑

n=1

1
n2

nije naroqito pogodan za efektivno pri-

bli¼no izraqunavaǌe broja π, qak ni pomo²u raqunara. Za tako nexto se koriste
redovi koji mnogo br¼e konvergiraju (poqev od Ojlerovog reda (1)). Aktuelni
svetski rekord u broju taqno odre±enih decimala broja π dr¼e japanski kompju-
terski in¼eǌeri A. J. Je i X. Kondo koji su 2011. godine odredili ǌih 1013 [9].
Pri tom su koristili slede²i Qudnovski-Ramanu­anov red [1, 3]

1
π

= 12
∞∑

n=0

(−1)n (6n)!
(n!)3(3n)!

13591409 + 545140134n

6403203n+3/2
.

Na pitaǌe zaxto su to radili, odgovaraju: ,,Zato xto je to π . . . i zato xto
umemo!“

LITERATURA
1. R. P. Agarwal, H. Agarwal, S. K. Sen, Birth, growth and computation of pi to ten trillion

digits, Adv. Difference Equ. 2013:100 (2013), doi:10.1186/1687-1847-2013-100.

2. D. Adna±evi², Z. Kadelburg, Matematiqka analiza II, Krug i Matematiqki fakultet, Beo-
grad, 2011.

3. D. H. Bailey, J. M. Borwein, A. Mattingly, G. Wightwick, The computation of previously
inaccessible digits of π2 and Catalan’s constant, Notices Amer. Math. Soc. 60, 7 (2013), 844–
854.



Izraqunavaǌe jednog poznatog zbira 45

4. W. Dunham, Euler, the Master of Us All, Dolciani Mathematical Expositions, No. 22, The
Mathematical Association of America.

5. P. Durren, Invitation to Classical Analysis, Pure and Applied Undergraduate Texts, No. 17,
American Mathematical Society, Providence, Rhode Island.

6. L. Euler, Opera omnia, Ser. I, Vol. 14, pp. 73–74.

7. E. L. Stark, The series
∑∞

k=1
k−s, s = 2, 3, 4, . . . once more, Math. Magazine 47 (1974),

197–202.

8. A. M. ºglom, I. M. ºglom, �lementarny� vyvod formul Vallisa, Le�bnica i ��lera
dl� qisla π, Uspehi mat. nauk 8:5 (57) (1953), 181–187.

9. A. J. Yee, Sh. Kondo, 5 trillion digits of π—new world record, 7 Mar 2011, available at http://
www.numberworld.org/misc runs/pi-5t/details.html.

Matematiqki fakultet, Studentski trg 16, Beograd

E-mail : kadelbur@matf.bg.ac.rs


