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ZAJEDNIQKA ANALIZA TRI TVR�EǋA O TROUGLU

Neka su A, B,C temena trougla, a1, b1, c1 du¼ine ǌima naspramnih strani-
ca, a2, b2, c2 du¼ine visina iz tih temena i konaqno a3, b3, c3 su du¼ine te¼ixnih
du¼i koje polaze iz tih temena. Analizira²emo tri tvr±eǌa iskazana implika-
cijom
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gde je i ∈ {1, 2, 3}. Dakle, ako vrednost jedne veliqine izaberemo proizvoǉno iz
ǌenog prirodnog domena, tra¼imo koji je mogu²i interval za drugu veliqinu uz
date uslove.

Sluqaj 1. Ako je i = 1, to znaqi da jedna stranica trougla treba da bude
jednaka geometrijskoj sredini dveju drugih stranica, dakle,
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Uvrstimo li ovo u modifikovanu Heronovu formulu
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dobijamo vezu
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Jasno je da izraz pod korenom mora biti ve²i od nule, pa sledi
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a tu nejednakost mo¼emo pisati u obliku
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Zamenimo li b1/a1 = x u prethodnu nejednakost, dobijamo da je

x4 − 2x3 − x2 − 2x + 1 < 0.
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Prethodni simetriqan polinom se lako rastavǉa na qinioce, pa se dobija

(x2 + x + 1)(x2 − 3x + 1) < 0,

xto, zbog x2 + x + 1 > 0 za svako x ∈ R, va¼i ako i samo ako je x2 − 3x + 1 < 0.
Rexeǌe posledǌe nejednaqine je
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qime je dato tvr±eǌe dokazano za i = 1.

Sluqaj 2. Ako je i = 2, to znaqi da je u trouglu jedna visina jednaka
geometrijskoj sredini druge dve, dakle

(7) c2
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Iz poznatih formula 2P = a1a2 = b1b2 = c1c2 za povrxinu trougla dobijamo da
je
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Zamenimo li uslove (8) u (3), dobijamo vezu
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a ako iskoristimo (7), onda imamo da je
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Kako izraz pod korenom mora biti ve²i od nule, to iz prethodnog sledi nejedna-
kost
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a to je tip nejednaqine (5), pa dobijamo da je b−1
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Ako iskoristimo da je
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qime je dato tvr±eǌe dokazano za i = 2.

Sluqaj 3. Ako je i = 3, to znaqi da je jedna te¼ixna du¼ trougla jednaka
geometrijskoj sredini druge dve,

(9) c2
3 = a3b3, a3 ∈ (0, +∞).
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Koriste²i kosinusnu teoremu, dobijamo slede²e veze izme±u te¼ixnih du¼i i
stranica trougla:
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a kada ih sumiramo, sledi veza
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Ako iz jednakosti (10) izrazimo veliqine a2
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sabiraǌa i sre±ivaǌa, dobijamo relaciju
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Zamenimo li (11) i (12) u (3), sledi da je
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i ako iskoristimo (9), ona dobija oblik
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Uporedimo li (13) sa (4), zakǉuqujemo da je
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qime je dato tvr±eǌe dokazano i za i = 3.
Zakǉuqujemo da implikacija (1) va¼i za i ∈ {1, 2, 3}.
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