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FRAGMENTI SE�AǋA NA VOJINA DAJOVI�A

Nadam se da mi qitaoci ne²e zameriti xto ²u pisati neformalno i prema
se²aǌima. Za sistematske qlanke videti [1, 8]. Navex²u prvo samo nekoliko
detaǉa u vezi sa ulogom profesora Vojina Dajovi²a u razvoju i popularizaciji
matematike.

1. Otvaraǌe novih smerova i razvoj primeǌene matematike

Uprkos qiǌenici da su radovi Mihaila Petrovi²a, osnivaqa beogradske
matematiqke xkole, bili preteqa kibernetike, na PMF-u u Beogradu postojali
su otpori razvoju raqunarstva i primeǌene matematike. Profesor Vojin Dajo-
vi² je uspeo da savlada ove prepreke. Inicirao je prvo razvijaǌe Numeriqke
matematike (formiraǌe Numeriqkog instituta) u okviru svoje katedre i dopri-
neo da Matematiqki institut 1965. godine nabavi raqunar koji je smexten u
prostorijama PMF-a i tako su studenti matematike prvi put poqeli da koriste
raqunar u nastavi.

Na osnovu ǌegove studije ,,Uloga i znaqaj matematike i nastave matematike
u Jugoslaviji“ doneta je 1962. godine Preporuka Odbora SIV-a za unapre±eǌe
matematiqkog obrazovaǌa. Pre donoxeǌa te preporuke na studije matematike
se nije upisivalo vixe od 20 studenata. Sada, na prijemni ispit 2014/2015,
na Matematiqkom fakultetu prijavilo se 1019 kandidata, vixe od polovine na
raqunarstvo i informatiku.

Tradicija raqunarstva predstavǉa krupnu vrednost beogradske matematiq-
ke xkole i o¼ivǉava duh Mihaila Petrovi²a, a broj kandidata na prijemnom
ispitu 2014/2015 pokazuje da je profesor Dajovi² imao ispravnu viziju.

2. Obrazovaǌe i popularizacija matematike

Vojin Dajovi² je permanentno uqestvovao u reformi nastave matematike i
fizike na svim nivoima. Imao je te¼ak put, ali i ogromnu voǉu i energiju.

Stalno je vodio raquna o razvoju nastave matematike. U svojim predavaǌima
uvek je navodio i primene matematike i ǌene veze sa drugim oblastima. Sma-
trao je da su doprinosi pitaǌima nastave matematike podjednako va¼ni kao i
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razvoj nauke. Na Prirodno-matematiqkom fakultetu se, izme±u ostalog, zalagao
za uvo±eǌe predmeta Metodika nastave matematike.

Boravio je u Moskvi od marta 1963. do februara 1964. godine. Prouqavao
je organizaciju nauqnog rada i stvaraǌe nauqnog podmlatka. Na osnovu ǌegovog
elaborata, Odbor za prosvetu Savezne skupxtine doneo je odluku o uvo±eǌu
poslediplomskih studija.

Profesori Vojin i Milica Dajovi² preveli su u­benike Kurs diferenci-
jalnog i integralnog raquna I, II Riqarda Kuranta. Na spomen-tabli Kurantovog
instituta u ǋujorku, na spisku Kurantovih saradnika je i ime Vojina Dajovi²a.

Uticao je da profesor §uro Kurepa (1907–1993), koji je imao ve² veliki
ugled u svetskim matematiqkim i nauqnim krugovima i dubok nauqni trag, pre±e
iz Zagreba u Beograd (xkolske 1965/66 godine) na mesto redovnog profesora
Prirodno-matematiqkog fakulteta.

Profesor Dajovi² je idejni tvorac Matematiqke gimnazije, o qemu ²e vixe
reqi biti u posebnom qlanku.

3. Organizovaǌe nauqnih skupova

Jedan je od glavnih osnivaqa Druxtva matematiqara i fiziqara NR Srbije;
uqestvovao je u osnivaǌu Saveza druxtava matematiqara i fiziqara Jugoslavi-
je. Savez je, izme±u ostalog, organizovao nauqne skupove (na osnovu incijative
generalnog sekretara Dajovi²a) na kojima su uqestvovali i neki od najznaqajnih
matematiqara: Xoke, Soboǉev, Aleksandrov, Kolmogorov, Sjerpinski, Nevanli-
na i drugi.

Savez druxtava matematiqara i fiziqara Jugoslavije, u saradǌi sa ICMI
(International Commission on Mathematical Instruction) organizovao je simpo-
zijum ,,Koordinacija nastave matematike i fizike“, koji je odr¼an u Beogradu
od 19–24. septembra 1960. godine. Organizacioni odbor qinili su: §. Kure-
pa (predsednik), M. H. Stoun i V. Dajovi². Zbornik radova je objavio Savez
druxtava matematiqara i fiziqara Jugoslavije.

Organizovao je, sa saradnicima, tri internacionalna simpozijuma ,,Komp-
leksna analiza i primene“ – Aran±elovac ’84, Budva ’86 i Herceg Novi ’88. Na
ǌima su uqestvovali, izme±u ostalih, neki od najpoznatijih svetskih matema-
tiqara iz te oblasti, kao xto su Rudin, Henkin, Korevar, Qirka, Ajzenberg,
Ahern, Vuorinen, Hengartner, Saito . . . Izlagane su najaktuelnije teme, pa
smo tako na Simpozijumu u Aran±elovcu dobili potpuno ,,sve¼u“ informaciju
o Biberbahovoj hipotezi. Nastavǉaju²i Dajovi²evu viziju, mi danas dr¼imo
na Matematiqkom fakultetu simpozijume Matematika i primene, svake godine,
poqev od 2008-e.

Gradio je veze me±u strukama i podr¼avao objediǌavaǌe ne samo matematike,
fizike i astronomije, nego i xire – druxtvenih nauka i filozofije sa prirodnim
naukama.
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4. Nauqni rad
Profesor Dajovi² je 1956. godine odbranio doktorsku disertaciju ,,Egzis-

tencija graniqnih vrednosti nekih klasa analitiqkih funkcija“. ǋegovi nauqni
radovi razmatraju probleme vezane za egzistenciju graniqnih vrednosti nekih
klasa analitiqkih funkcija klase Hp.

U kompleksnoj analizi, Hardijevi prostori (ili Hardijeve klase) Hp su
prostori analitiqkih funkcija na jediniqnom disku ili gorǌoj poluravni. Uveo
ih je F. Ris 1923. godine, a dobili su ime po G. H. Hardiju, na osnovu ǌegovog
qlanka iz 1915. godine.

Ako je f holomorfna funkcija na jediniqnom disku, ǌena integralna sredina
Mp(r, f) po kru¼nici polupreqnika r, neopadaju²a je funkcija po r ∈ [0, 1);
f pripada Hp ako je Mp(r, f) ograniqena funkcija na 0 < r < 1, tj. ‖f‖p =
sup0<r<1 Mp(r, f) < ∞.

U realnoj analizi Hardijevi prostori, real-Hp, jesu odre±eni prostori dis-
tribucija na realnoj pravoj R, koje su (u smislu distribucija) graniqne vre-
dnosti holomorfnih funkcija kompleksnih Hardijevih prostora. Preciznije,
distribucija g na R pripada real-Hp ako postoji f ∈ Hp(H), tako da fy te¼i g,
u smislu distribucija, kada y → 0+. Ovde H oznaqava gorǌu poluravan, fy je
funkcija definisana na R pomo²u fy(x) = f(z), gde je z = x+ iy, x ∈ R i y > 0.

Hardijevi prostori su povezani sa Lp prostorima koji se prouqavaju u re-
alnoj i funkcionalnoj analizi. Za 1 ≤ p ≤ ∞, realni Hardijevi prostori su
odre±eni potprostori Lp, dok za p < 1, Lp prostori imaju neke ,,nepo¼eǉne“ oso-
bine, a Hardijevi prostori su mnogo pogodniji za prouqavaǌe. Sa hp oznaqavamo
odgovaraju²e prostore harmonijskih funkcija na jediniqnom disku.

U ciǉu formulacije teoreme 1 (deo (A) je rezultat Dajovi²a [3]), prvo
dajemo potrebne definicije.

Ako je funkcija h definisana na segmentu I = (r0e
it, eit), 0 ≤ r0 < 1, pixemo

f∗(t) = limr→1−0 h(reit) ako limes postoji. Furijeove koeficijente funkcije g
oznaqavamo sa ĝ(n) ili ĝn i sliqno ako je funkcija f holomorfna u okolini 0,
pixemo f(z) =

∑∞
n=0 f̂(n)zn.

Za f(z) =
∑∞

k=0 akzk i g(z) =
∑∞

k=0 bkzk definixemo Adamarov proizvod:
F (z) =

∑∞
k=0 akbkzk. Dakle, F̂n = f̂nĝn.

Teorema 1. (A). Pretpostavimo (i.1): f ∈ Hp i Re g ∈ hq, gde je p, q > 1
i p−1 + q−1 = 1. Tada va¼i (I.1): F je ograniqena analitiqka funkcija u
jediniqnom disku.

(B). Pretpostavimo (i.2): f ∈ Hp i Re g ∈ h1. Tada va¼i (I.2): F ∈ Hp,
1 ≤ p ≤ ∞.

Da²emo nekoliko napomena. Komentari (a) i (b) su preuzeti iz [5], a za (v)
videti [9].

Na osnovu Dajovi²evog rada [3], Vajtman [10] je dokazao inverzni iskaz teo-
reme 1. Sovjetski matematiqari V. I. Gorbaiquk i V. I. Kuzminq [5] uopxtili
su Vajtmanov rezultat.
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Stavimo fθ(r, t) = f(r, ei(θ−t)).

(a) Kiu Hua-Ji je koristio F (z) = 1
π

∫ 2π

0
u(r, t)f(r, ei(θ−t)) dt+ c0, gde je z =

ρeiθ, ρ = r2, 0 < ρ < 1, g(r, eit) = u(r, t)+ iv(r, t), F ∗(θ) = 1
π

∫ 2π

0
u∗(t)f∗θ (t)dt+ c0

i c0 je konstanta.

Kako je ‖f∗θ ‖p = ‖f∗‖p, f∗θ ∈ Lp i u∗ ∈ Lq, F ∗ ∈ L∞, sledi da (I.1) va¼i.

(b) Tumarkin je primetio da ovaj postupak ne daje dokaz dela (B).

(v) Ako f ∈ Hp, p ≤ 1, tada je |f̂(n)| = o(n
1
p−1).

Dajovi² je razmatrao i pretpostavku

(ii.1): za f ∈ Hp, postoji δ > 0 tako da |f̂n| ≥ δ.

Ako je 0 < p < 1 uslov (ii.1) definixe podklasu klase Hp.

S obzirom da za p ≥ 1, |f̂n| → 0, u ovom sluqaju mo¼emo pokuxati da uslov
(ii.1) korigujemo u npr.

(ii.2 ): za f ∈ Hp, p > 1, postoje ε, δ > 0 tako da nε+1/q|f̂n| ≥ δ.

5. U
benik Kompleksne analize

Profesor Dajovi² je objavio u­benik [2] iz koga navodimo jedan interesantan
detaǉ – dokaz Pricipa maksimuma modula (PMM) pomo²u teoreme o sredǌoj
vrednosti.

(PMM). Neka je funkcija f holomorfna na krugu B(z0, r0) i neka va¼i (i): |f |
dosti¼e maksimum u z0. Tada je f konstanta.

Na osnovu Koxijeve formule, za 0 < r < r0,

f(z0) =
1
2π

∫ 2π

0

f(z0 + reit) dt

i stoga

|f(z0)| ≤ 1
2π

∫ 2π

0

|f(z0 + reit)| dt < |f(z0)|,

pa dobijamo kontradikciju.

Napomena. U dokazu je pre²utno korix²eno da va¼i (ii): postoji r > 0
tako da je |f(z)| < |f(z0)| za neko z ∈ K(z0, r), gde K(z0, r) oznaqava kru¼nicu
polupreqnika r.

Pretpostavka da |f | dosti¼e lokalni maksimum u z0 znaqi da postoji r1 > 0
tako da |f(z)| ≤ |f(z0)| za z ∈ B(z0, r1). Otuda sledi (iii): |f | = c na B(z0, r1).

Dakle, ako pri pretpostavci (i) ne va¼i (ii) onda va¼i (iii). Postoje razni
naqini da se doka¼e da iz (iii) sledi da je f konstanta; videti npr. [6].

Kao xto i ovaj primer pokazuje, profesor Dajovi² imao je veliko pedagoxko
iskustvo i davao je kratke i prozraqne dokaze i izbegavao preteranu matematiqku
strogost.

6. Posebno je cenio sovjetske matematiqare. Voleo je qesto da pomene Kol-
mogorova, Xabata, Privalova . . .
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Dao mi je da prouqavam kǌigu [9] I. I. Privalova. Tako sam se zaintere-
sovao za Hardijeve prostore. Podr¼ao je ideju profesora Miliqi²a da se iz
Qaqanske gimnazije dovede M. Pavlovi². Uticao sam na Pavlovi²a da se zain-
teresuje za ovu oblast i tako smo dobili ,,srpskog Hardija“; neki su govorili
da se ,,u Beogradu pojavio Litlvud“ (aluzija na Hardijevog koautora u mnogim
radovima).

Shvatio sam da treba kao Bibliju da studiram i Xabatove kǌige [11]. Je-
dnom prilikom profesor Dajovi² me je pozvao u svoj stan; na ǌegovoj ogromnoj
polici za kǌige sam naxao i kǌigu G. M. Goluzina [4]. Bio sam oduxevǉen
geometrijskom teorijom funkcija (GTF) i Greqovim argumentom. Zamolio sam
profesora Dajovi²a da mi pozajmi Goluzinovu kǌigu; pitao me je xta ²e mi ta
kǌiga (verovatno je mislio da je dovoǉno kada mi je dao da prouqavam kǌigu [9]
I. I. Privalova, a i kǌiga Goluzina ima ,,texkih“ delova).

V. Mi²i², uqenik profesora Zoriqa i Dajovi²a, dao mi je kǌigu sa konfe-
rencije u Kenterberiju u kojoj sam naxao i Geringov problem. Tako je poqelo
moje interesovaǌe za kvazikonformna (qc) preslikavaǌa. Kasnije se na semina-
ru pojavio moj uqenik V. Markovi², koji je 2014. izabran za qlana britanskog
(engleskog) kraǉevskog druxtva (Royal Fellow of the British Royal Society) i pro-
fesor u Kembri­u. Ipak, klica svega toga potiqe od profesora Dajovi²a.

Kroz slede²i primer ¼elim da ilustrujem odnos profesora Dajovi²a prema
ruskim matematiqarima. Student je na ispitu iz Kompleksne analize dobio pi-
taǌe ,,Pricip maksimuma modula (PMM)“ (videti taqku 4). Profesor Niki² je
na predavaǌima (kao i mnogi savremeni u­benici) koristio teoremu o otvorenom
preslikavaǌu. Student je na konceptu ispisao dokaz pomo²u teoreme o otvorenom
preslikavaǌu. Profesor Dajovi² nije zadovoǉan i vra²a studenta da popravi
dokaz. Student ka¼e da je radio po predavaǌima profesora Niki²a. S obzirom
da je Niki² bio Dajovi²ev uqenik i da je tek postao docent, asistent shvata da je
student nespretno odgovorio. Asistent se snalazi i diskretno ka¼e profesoru
da je dokaz iz Xabatove kǌige [11] i situacija se meǌa. Profesor Dajovi² je
na visini zadatka i ka¼e studentu: ,,Zaxto ste tako nesigurni? Hteo sam samo
da vas proverim; trebalo je da se suprostavite i zato minimalna ocena xest“.

7. Qesto je u razgovoru koristio poslovice i kao da ga vidim kako govori
kada neko postavi nerealne ciǉeve: ,,mnogo je maqku gove±a glava“; ili, kada
previxe ¼uri: ,,ne treba se izuvati pre vode“, ili ,,nije xe²er pao u vodu“. U
xali je govorio: ,,matematiqari ili umiru kao apsolventi, ili dugo ¼ive“.

Dr¼ao se Zmajevog naqela ,,Ako dajex malo, i ne mo¼ex vixe, mnogo ti se
pixe“. Voleo je da koristi i poslovice ,,po poruci vuci meso ne jedu“, ,,xto je
brzo, to je i kuso“, ,,svaki je majstor najboǉi u svom selu“, . . . Iako je zaslu¼an
za stvaraǌe mlade nauqne elite, Vojin je bio anti-elitista (npr. podr¼ao je i
birao asistente i iz radniqkih i seoskih sredina).

Znao je da bude duhovit. Kada je Lazar Milin doxao kod ǌega u vezi sa
poslom, rekao je ,,prvo sedi Lazare, a onda ustani Lazare“. Kada je Lazar
ustao, rekao je ,,mislio sam na pesmu ‘Ustani care Lazo, od Srbije glavo’ “.
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Kako reqe Paskal, ,,ǈubav nema godine. Ona se uvek ra±a.“ Vojin Dajovi² je
celog ¼ivota imao energiju i ǉubav za razvoj matematike, koja kao da se prenela
na nax seminar za Kompleksnu analizu i druge aktivnosti (ako verujemo u zakon
odr¼aǌa energije).

Napomena. Zahvaǉujem se profesorima V. Mi²i²u i Z. Kadelburgu i kolegi
M. Svetliku na korisnim sugestijama.
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