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QETIRI METODE ZA RJEXAVAǋE
LINEARNIH KONGRUENCIJA

Teoriju kongruencija je uveo Gaus u svom djelu Disquisitiones Arithmeticae
1801. godine. On je uveo i oznaku za kongruencije ≡ koja je i danas u upotrebi.
Kao xto je i oznaka za kongruencije sliqna znaku jednako, tako i same kongru-
encije imaju dosta sliqnosti s jednakostima. Istaknimo da je relacija ,,biti
kongruentan modulo m“ relacija ekvivalencije na skupu Z, tj. ona je refleksiv-
na, simetriqna i tranzitivna.

Definicija 1. Ako cijeli broj m 6= 0 dijeli razliku a − b onda ka¼emo
da je a kongruentan b modulo m i pixemo a ≡ b (mod m). U protivnom ka¼emo
da a nije kongruentan b modulo m i pixemo a 6≡ b (mod m).

Treba napomenuti da, kako je a − b djeǉivo s m ako i samo ako je djeǉivo
s −m, to je dovoǉno razmatrati samo sluqajeve kada je m pozitivan cijeli
broj, tj. kada je m prirodan. Tako±e treba uoqiti da postoji razlika izme±u
kongruencija i ostataka pri dijeǉeǌu prirodnim brojem. Ako je a cijeli i m
prirodan broj, tada a mod m predstavǉa ostatak pri dijeǉeǌu broja a brojem
m. Tako imamo da je 23 ≡ 13 (mod 5), ali je 23 mod 5 6= 13.

Jedna karakterizacija kongruencija je direktna posǉedica Teoreme o di-
jeǉeǌu s ostatkom.

Teorema 1. [Teorema o dijeǉeǌu s ostatkom] Za proizvoǉan prirodan
broj b i cijeli broj a postoje jedinstveni cijeli brojevi q i r takvi da je
a = qb + r, 0 6 r < b.

Broj q se zove koliqnik a r se zove ostatak.
Sada iz definicije relacije biti kongruentan i prethodne teoreme zakǉu-

qujemo da ako je a ≡ b (mod m), to znaqi da postoji cijeli broj k takav da je
a = km + b.

Mi ²emo analizirati rjexivost linearne kongruencije s jednom nepoznatom,
tj. kongruencije oblika

ax ≡ b (mod m),
gdje su a i m prirodni brojevi, a b cijeli broj.

Prije nego navedemo metode za rjexavaǌe linearnih kongruencija, navedimo
neke osobine kongruencija.
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Teorema 2. Neka su a, b, c, d cijeli brojevi, m,m1,m2, . . . , mr prirodni
brojevi i f polinom s cjelobrojnim koeficijentima.
1. a ≡ b (mod m) ⇔ a− b ≡ 0 (mod m).
2. Ako je a ≡ b (mod m) i c ≡ d (mod m), onda je ac ≡ bd (mod m), a + c ≡

b + d (mod m) i a− c ≡ b− d (mod m).
3. Ako je a ≡ b (mod m) i d | m, onda je a ≡ b (mod d).
4. Ako je a ≡ b (mod m), onda je ac ≡ bc (mod mc) za svaki c > 0.
5. a ≡ b (mod mi), i = 1, . . . , r ⇔ a ≡ b (mod nzs(m1, . . . , mr)).
6. Ako je a ≡ b (mod m) onda je f(a) ≡ f(b) (mod m).
7. ax ≡ ay (mod m) ⇔ x ≡ y (mod m

nzd(a,m) ).

8. Ako je m > 1, nzd(a,m) = nzd(b,m) = 1, te vrijedi ac ≡ bc (mod m) i
ad ≡ bd (mod m), tada je anzd(c,d) ≡ bnzd(c,d) (mod m).

1. Rjexeǌe linearne kongruencije

Rjexeǌe kongruencije f(x) ≡ 0 (mod m), gdje je f(x) polinom s cjelobroj-
nim koeficijentima, jeste svaki cijeli broj x koji je zadovoǉava. Ako je x1 neko
rjexeǌe kongruencije f(x) ≡ 0 (mod m), i x2 ≡ x1 (mod m), onda je i x2 ta-
ko±e rjexeǌe te kongruencije. Za dva rjexeǌa x i x′ ka¼emo da su ekvivalentna
ako je x ≡ x′ (mod m). Pod brojem rjexeǌa kongruencije podrazumijevamo broj
neekvivalentnih rjexeǌa.

Teorema 3. Neka su a i m prirodni brojevi, te b cijeli broj. Kongru-
encija

(1) ax ≡ b (mod m)

ima rjexeǌa ako i samo ako d = nzd(a, m) dijeli b. Ako je ovaj uslov ispuǌen,
onda gorǌa kongruencija ima taqno d rjexeǌa modulo m, i to

x0 + t · m

d
, t = 0, 1, . . . d− 1,

gdje je x0 jedinstveno rjexeǌe kongruencije
a

d
x ≡ b

d
(mod

m

d
).

U radu ²e biti opisane qetiri metode za rjexavaǌe linearnih kongruencija
s jednom nepoznatom, i to:

1. metoda svo±eǌa na diofantsku jednaqinu,
2. metoda transformacije koeficijenata,
3. Ojlerova metoda,
4. metoda koja koristi Euklidov algoritam

Primjer 1. Rijexiti kongruenciju 4x ≡ 7 (mod 10).
Rjexeǌe. Kako nzd(4, 10) = 2 ne dijeli 7, to posmatrana kongruencija nema

rjexeǌa. 4



30 B. Ibrahimpaxi², A. Zoli²

2. Metoda svo�eǌa na diofantsku jednaqinu

Ako je ax ≡ b (mod m), onda broj m dijeli razliku ax−b, tj. mora postojati

cijeli broj y takav da je
ax− b

m
= y ili u ekvivalentnom obliku

(2) ax−my = b.

Vidimo da ²e kongruencija (1) imati rjexeǌe ako diofantska jednaqina (2) ima
rjexeǌe. Ako je x0 rjexeǌe kongruencije (1), tj. ako je (x0, y0) rjexeǌe diofant-
ske jednaqine (2), onda mora biti

(3) ax0 −my0 = b.

Oduzmemo li od jednaqine (2) jednaqinu (3) dobijamo da je

y − y0 =
a(x− x0)

m
.

Kako d = nzd(a,m) dijeli a i m, to vrijedi

y − y0 =
a
d (x− x0)

m
d

,

a kako su brojevi a/d i m/d relativno prosti, te kako je lijeva strana cijeli
broj, to da bi i desna strana bila cijeli broj mora biti x− x0 djeǉivo s m/d.
Tako dobijamo da je

x− x0 = t · m

d
pa je x = x0 + t · m

d
, t ∈ Z.

Tako dobijamo d nekongruentnih rjexeǌa modulo m kongruencije (1), i to:

x0, x0 +
m

d
, x0 +

2m

d
, . . . , x0 +

(d− 1)m
d

.

Primjer 2. Rijexiti metodom svo±eǌa na diofantsku jednaqinu kongruen-
cije

a) 3x ≡ 5 (mod 7), b) 2x ≡ 6 (mod 10).

Rjexeǌe. a) Kako je nzd(3, 7) = 1 i kako 1 | 5, to naxa kongruencija ima
jedinstveno rjexeǌe. Iz date kongruencije slijedi da broj 3x − 5 mora biti

djeǉiv sa 7, tj. postoji cijeli broj y takav da je
3x− 5

7
= y. To znaqi da je

(4) 3x− 7y = 5.

Oqito je jedno partikularno rjexeǌe ove jednaqine (x0, y0) = (4, 1) i vrijedi

(5) 3x0 − 7y0 = 5.

Oduzimaju²i jednaqine (4) i (5) dobijamo 3(x−x0)−7(y−y0) = 0, odakle slijedi
da je x− x0 = 7t, t ∈ Z. Zakǉuqujemo da je rjexeǌe polazne kongruencije

x = 7t + 4, t ∈ Z, tj. x ≡ 4 (mod 7).
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b) Sada je nzd(2, 10) = 2, pa kako 2 | 6, to polazna kongruencija ima 2
rjexeǌa. Analogno prethodnom primjeru, dobijamo pridru¼enu diofantsku je-
dnaqinu 2x− 10y = 6 qije je jedno partikularno rjexeǌe (8, 1), pa joj je rjexeǌe

x = 8 +
−10
2

· t = 8− 5t, t ∈ Z,

tj. x = 8 + 5w, w ∈ Z. Dobili smo da je rjexeǌe date kongruencije x ≡ 8
(mod 5), xto mo¼emo zapisati kao

x = 10t + 3 ili x = 10t + 8, t ∈ Z. 4

3. Metoda transformacije koeficijenata

Koriste²i qiǌenicu da je relacija biti kongruentan jedna relacija ekviva-
lencije, te ǌene navedene osobine, mi zadanoj kongruenciji dodajemo (oduzimamo)
neku prikladno odabranu istinitu kongruenciju kako bismo pojednostavili po-
stupak rjexavaǌa.

Primjer 3. Metodom transformacije koeficijenata rijexiti kongruencije
a) 7x ≡ 3 (mod 11), b) 17x ≡ 25 (mod 28).

Rjexeǌe. a) Kako je nzd(7, 11) = 1 i kako 1 | 3, to naxa kongruencija
ima jedinstveno rjexeǌe. Dodamo li zadatoj kongruenciji kongruenciju 0 ≡ 11
(mod 11), koja je oqigledno istinita, dobijamo kongruenciju 7x ≡ 14 (mod 11).
Skratimo li ovu kongruenciju sa 7 (xto je dozvoǉeno) dobijamo

x ≡ 2 (mod 11),

xto i predstavǉa rjexeǌe polazne kongruencije.

b) Zbog nzd(17, 28) = 1 i ova kongruencija ima jedinstveno rjexeǌe. Do-
damo li joj kongruenciju 28x ≡ 0 (mod 28) dobijamo kongruenciju 45x ≡ 25
(mod 28) koju mo¼emo skratiti s 5. Nakon skra²ivaǌa imamo kongruenciju
9x ≡ 5 (mod 28), kojoj dodajemo kongruenciju 0 ≡ −140 (mod 28) i dobijamo
9x ≡ −135 (mod 28). Nakon skra²ivaǌa s 9 dobijamo kongruenciju x ≡ −15
(mod 28), tj.

x ≡ 13 (mod 28). 4

4. Ojlerova metoda

Za rjexavaǌe linearnih kongruencija Ojlerovom metodom potrebna nam je
Ojlerova teorema.

Definicija 2. Funkcija ϕ:N → N, koja prirodnom broju m pridru¼uje
broj prirodnih brojeva maǌih ili jednakih m, koji su relativno prosti s m,
naziva se Ojlerova funkcija.

Ojlerova funkcija je multiplikativna, tj. ako su m i n relativno prosti
prirodni brojevi, onda za Ojlerovu funkciju vrijedi ϕ (mn) = ϕ (m) ·ϕ (n). Ako
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je n = pα1
1 · pα2

2 · . . . · pαr
r rastavǉaǌe prirodnog broja n > 1 na proste faktore,

onda vrijedi

ϕ (n) = n ·
(

1− 1
p1

)
·
(

1− 1
p2

)
· . . . ·

(
1− 1

pr

)
.

Specijalno imamo da za prost broj p vrijedi ϕ(p) = p− 1.
Primjer 4. Izraqunati vrijednost Ojlerove funkcije za 13 i 778635.
Rjexeǌe. Kako je 13 prost broj, to je ϕ(13) = 13 − 1 = 12. Odredimo li

kanonsko rastavǉaǌe broja 778635 dobijamo

ϕ(778635) = ϕ
(
32 · 5 · 113 · 13

)

= 778635 ·
(

1− 1
3

)
·
(

1− 1
5

)
·
(

1− 1
11

)
·
(

1− 1
13

)

= 348480. 4
Teorema 4. [Ojler] Neka su a i m prirodni brojevi. Ako je nzd(a,m) = 1,

onda je
aϕ(m) ≡ 1 (mod m).

Prema Ojlerovoj teoremi imamo da je aϕ(m) ≡ 1 (mod m), a zbog reflek-
sivnosti relacije kongruencije vrijedi b ≡ b (mod m). Izmno¼imo li ove dvije
kongruencije dobijamo da je aϕ(m) · b ≡ b (mod m), tj.

a ·
(
aϕ(m)−1 · b

)
≡ b (mod m).

Uporedimo li ovu kongruenciju s kongruencijom (1), qije rjexeǌe tra¼imo, vi-
dimo da je ǌeno rjexeǌe

x ≡ aϕ(m)−1 · b (mod m).

Primjer 5. Ojlerovom metodom rijexiti kongruenciju 5x ≡ 4 (mod 12).
Rjexeǌe. Kako je nzd(5, 12) = 1, to naxa kongruencija ima jedinstveno

rjexeǌe. Iskoristimo li Ojlerovu teoremu i opisanu metodu dobijamo da je
rjexeǌe polazne kongruencije

x ≡ 5ϕ(12)−1 · 4 (mod 12) ≡ 54−1 · 4 (mod 12)

≡ 125 · 4 (mod 12) ≡ 5 · 4 (mod 12)

≡ 20 (mod 12) ≡ 8 (mod 12). 4

5. Metoda koja koristi Euklidov algoritam

Euklidov algoritam za odre±ivaǌe najve²eg zajedniqkog djelioca dva pri-
rodna (cijela) broja prvi put je opisan u Euklidovim Elementima, antiqkom
djelu o matematici koje je nastalo oko 300. godine pr.n.e, iako se vjeruje da je
algoritam bio poznat bar 200 godina ranije. U VII kǌizi Elemenata je iskazan
za prirodne brojeve, a u X kǌizi je data ǌegova primjena na du¼i.
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Euklidov algoritam je prvi netrivijalni algoritam koji je pre¼ivio do da-
nas. Vrlo je efikasan za raqunaǌe najve²eg zajedniqkog djelioca dva prirodna
broja koji ne zahtijeva ǌihovu prethodnu faktorizaciju, za koju treba napome-
nuti da predstavǉa jedan od texkih matematiqkih problema.

Algoritam ima veliku i teorijsku i praktiqnu primjenu. U [4] su opisane
neke od praktiqnih primjena kao xto su rjexavaǌe linearnih diofantskih jedna-
qina, rjexavaǌe linearnih kongruencija, odre±ivaǌe multiplikativnog inverza
u konaqnom poǉu i za razvoj racionalnog broja u veri¼ni razlomak. U [3] je
opisana metodiqka obrada nastavne teme Euklidov algoritam.

Euklidov algoritam je zasnovan na Teoremi o dijeǉeǌu s ostatkom i na
qiǌenici iskazanoj u sǉede²oj teoremi.

Teorema 5. Neka su a, b, q i r cijeli brojevi takvi da je b > 0, 0 6 r < b
i a = bq + r. Tada je nzd(a, b) = nzd(b, r).

Teorema 6. [Euklidov algoritam] Neka su a i b > 0 cijeli brojevi. Pret-
postavimo da je uzastopnom primjenom Teoreme o dijeǉeǌu s ostatkom do-
bijen niz jednakosti

a = bq1 + r1, 0 < r1 < b,

b = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,

. . .

rj−2 = rj−1qj + rj , 0 < rj < rj−1,

rj−1 = rjqj+1.

Tada je nzd(a, b) jednak rj, tj. posǉedǌem ostatku razliqitom od nule. Vri-
jednosti za x0 i y0 u izrazu nzd(a, b) = ax0+by0 mogu se dobiti izra�avaǌem
svakog ostatka ri kao linearne kombinacije od a i b.

Rjexeǌe kongruencije (1) dobijamo primjenom rekurzivne relacije

x−1 = 1, x0 = 0, xi = xi−2 − qixi−1, i = 1, 2, . . . , j,

gdje je j indeks posǉedǌeg ostatka u Euklidovom algoritmu koji je razliqit od 0,
a qi su koliqnici iz Euklidovog algoritma. U tom sluqaju rjexeǌe kongruencije
(1) je

x ≡ xj (mod m).
Kroz primjere ²emo pokazati rjexavaǌe kongruencije ax ≡ b (mod m) u 4 slu-
qaja:

1. nzd(a,m) = b = 1, 2. nzd(a, m) = 1, b > 1,
3. nzd(a,m) = b 6= 1, 4. b > nzd(a,m) > 1.

Primjer 6. Rijexiti kongruenciju 5x ≡ 1 (mod 7).
Rjexeǌe. Odredimo nzd(5, 7) Euklidovim algoritmom.

5 = 7 · 0 + 5, 7 = 5 · 1 + 2, 5 = 2 · 2 + 1, 2 = 1 · 2.



34 B. Ibrahimpaxi², A. Zoli²

Dobili smo da je nzd(5, 7) = 1, pa naxa kongruencija ima jedinstveno rjexeǌe
koje dobijamo primjenom navedene rekurzivne relacije.

i −1 0 1 2 3

qi 0 1 2

xi 1 0 1 −1 3

Dobili smo da je x ≡ 3 (mod 7) rjexeǌe polazne kongruencije. 4
Primjer 7. Rjexiti kongruenciju 7x ≡ 5 (mod 9).
Rjexeǌe. Odredimo nzd(7, 9) Euklidovim algoritmom.

7 = 9 · 0 + 7, 9 = 7 · 1 + 2, 7 = 2 · 3 + 1, 2 = 1 · 2.

Dobili smo i ovdje da je nzd(7, 9) = 1 pa naxa kongruencija ima jedinstveno
rjexeǌe.

i −1 0 1 2 3

qi 0 1 3

xi 1 0 1 −1 4

Analogno prethodnom primjeru je x′ ≡ 4 (mod 9) rjexeǌe kongruencije 7x ≡
1 (mod 9), pa je rjexeǌe polazne kongruencije

x ≡ 5 · 4 ≡ 20 ≡ 2 (mod 9). 4
Primjer 8. Rijexiti kongruenciju 24x ≡ 3 (mod 39).
Rjexeǌe. Primijenimo Euklidov algoritam.

24 = 39 · 0 + 24, 39 = 24 · 1 + 15, 24 = 15 · 1 + 9,

15 = 9 · 1 + 6, 9 = 6 · 1 + 3, 6 = 3 · 2.

Vidimo da je d = nzd(24, 39) = 3, pa kako 3 | 3 to kongruencija ima 3 rjexeǌa.
Rjexeǌe polazne kongruencije je

x ≡ xj + t · m

d
(mod m), t = 0, 1, . . . , d− 1,

gdje je k indeks posǉedǌeg nenultog ostatka u Euklidovom algoritmu.

i −1 0 1 2 3 4 5

qi 0 1 1 1 1

xi 1 0 1 −1 2 −3 5

Dobili smo da je rjexeǌe naxe kongruencije 24x ≡ 3 (mod 39) dato s

x ≡ 5 + t · 39
3
≡ 5 + 13t, t = 0, 1, 2,

tj. x ≡ 5, 18, 31 (mod 39). 4
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Primjer 9. Rijexiti kongruenciju 195x ≡ 57 (mod 231).
Rjexeǌe. Primijenimo Euklidov algoritam da odredimo nzd(231, 195).

195 = 231 · 0 + 195, 231 = 195 · 1 + 36, 195 = 36 · 5 + 15,

36 = 15 · 2 + 6, 15 = 6 · 2 + 3, 6 = 3 · 2.

Dobili smo da je d = nzd(195, 231) = 3. Kako 3 | 57 to data kongruencija ima
rjexeǌe (ima 3 rjexeǌa).

Formirajmo kongruenciju a′u ≡ b′ (mod m′), gdje je a′ = a/d, b′ = b/d i
m′ = m/d. Kako je nzd(a′,m′) = 1, to posǉedǌa kongruencija ima jedinstve-
no rjexeǌe. U naxem primjeru imamo da je a′ = 195/3 = 65, b′ = 57/3 = 19
i m′ = 231/3 = 77. Napomenimo da su koliqnici u Euklidovom algoritmu
za odre±ivaǌe nzd(a′,m′) jednaki koliqnicima iz Euklidovog algoritma za od-
re±ivaǌe nzd(a,m). Iskoristimo tu qiǌenicu i primijenimo navedenu rekur-
zivnu relaciju da rijeximo kongruenciju 65u ≡ 19 (mod 77).

i −1 0 1 2 3 4 5

qi 0 1 5 2 2

ui 1 0 1 −1 6 −13 32

Imamo da je

u ≡ uj · b′ ≡ 32 · 19 ≡ 608 ≡ 69 (mod 77)

rjexeǌe kongruencije 65u ≡ 19 (mod 77). Na kraju, koriste²i formulu

x ≡ u + t ·m′ (mod m), t = 0, 1, . . . , d− 1,

dobijamo rjexeǌa polazne kongruencije.

x ≡ 69, 69 + 77, 69 + 2 · 77 ≡ 69, 146, 223 (mod 231). 4
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