
NASTAVA RAQUNARSTVA

Nebojxa Vasiǉevi�

MODERNIZACIJA ULOGE RAQUNARSKOG
PROGRAMIRAǋA U OBRAZOVAǋU

Svedoci smo novog talasa uvo±eǌa programiraǌa kao opxteobrazovnog sa-
dr¼aja u obrazovne sisteme mnogih zemaǉa. Primer je Velika Britanija gde je od
proxle xkolske godine raqunarstvo obavezan predmet u svim osnovnim xkolama
poqev od najmla±ih uzrasta.

Prethodni sliqan talas otpoqeo je u vreme ku²nih i prvih personalnih
raqunara krajem sedamdesetih i tokom osamdesetih godina. U mnogim xkolama
xirom sveta poqiǌalo je da se uqi programiraǌe, najqex²e uz korix²eǌe pro-
gramskog jezika Basic. Talas je okonqan tako xto se u ve²ini xkola na kraju
prexlo na korix²eǌe raqunara bez programiraǌa. Na kraju su preovladale
ideje tehnoloxkog opismeǌavaǌa koje su iskǉuqivo orijentisane na korix²eǌe
tehnologije.

Zapravo je u celom tom periodu raqunarskom obrazovaǌu pristupano kao
poznavaǌu tehnike, s tim da je u poqetku programiraǌe bilo sastavni deo ko-
rix²eǌa tehniqke sprave. Na primer, poglavǉa korisniqkog uputstva za Komo-
dor 64 su bila: Raspakivaǌe i povezivaǌe, Tastatura Komodora 64, Korix²eǌe
softvera, Basic – programski jezik, Programiraǌe u Basic-u, itd. Dakle, dva
poglavǉa nakon objaxǌeǌa kako se ure±aj ukǉuquje u struju i xta znaqi ko-
ji taster na tastaturi sledi uvod u jedan programski jezik. Me±utim, razlog
tome nije bilo razumevaǌe znaqaja programiraǌa, ve² qiǌenica da je Basic pred-
stavǉao osnovni korisniqki interfejs koji se pojavǉuje kada se raqunar ukǉuqi.
Kako je napredno korix²eǌe raqunara prestalo da pretpostavǉa elemente pro-
gramiraǌa, tako je i programiraǌe nestalo iz informatiqkog obrazovaǌa. To
je sliqno kao xto je za vozaqki ispit prestalo da se uqi poznavaǌe rada qetvo-
rotaktnog motora.

Odre±eni broj struqǌaka je i tada shvatao da programiraǌe doprinosi raz-
voju naqina razmixǉaǌa i razumevaǌu sveta oko sebe, bax kao matematika i fi-
zika, ali to zapravo nije bio preovla±uju²i razlog zaxto se tada uqilo progra-
miraǌe. Sve vreme je tehniqko opismeǌavaǌe bilo i ostalo dominantan koncept,
samo xto taj koncept u poqetku nije mogao da zaobi²e odre±eni nivo programi-
raǌa kao naprednog oblika korix²eǌa tehnologije. Qak i tamo gde je nastavilo
da se uqi programiraǌe u osnovnim xkolama, pristup uqeǌu programiraǌa ni-
je lako pronalazio put izme±u opxtetehniqkog i profesionalno-programerskog
pristupa.

20 N. Vasiǉevi²

Novi talas uvo±eǌa programiraǌa u xkolske kurikulume se zasniva na
qiǌenici da postoje odre±ene sposobnosti apstraktnog razmixǉaǌa koje su po-
trebne svima za ¼ivot i rad u digitalnom dobu, a koje se naboǉe stiqu kroz
programiraǌe. Dakle, primarni ciǉ uqeǌa programiraǌa kao opxteobrazovnog
sadr¼aja nije osposobǉavaǌe za korix²eǌe tehnike niti priprema za budu²e
profesionalno programiraǌe, ve² sticaǌe specifiqnih mentalnih sposobnosti.

Na primer, neko lakxe razume, a neko te¼e da ukoliko sistematski obe-
le¼avamo stilove u Microsoft Word dokumentu, mo²i ²emo automatski da formi-
ramo sadr¼aj i mo¼emo automatizovati razne druge aktivnosti, poput korekcije
izgleda svih podnaslova. Sliqno, neko lakxe razume, a neko te¼e da u Excel ta-
beli treba uvek da dodamo novu kolonu sa obele¼jem kada ¼elimo da obele¼avamo
redove, umesto samo da kolone bojimo u razne boje, jer ako samo bojimo, posle
ne²emo lako automatizovati filtriraǌe redova, sortirati, raqunati zbirove
po grupama itd. Ovo je dobro da znaju svi korisnici aplikacija Word i Excel,
a mo¼emo primetiti da osobe koje znaju da programiraju spadaju u kategoriju
onih koji lakxe razumeju ovo xto priqamo.

Primeri poput prethodna dva ilustruju jednu mentalnu sposobnost koja je
opxte potrebna u digitalnom dobu, a koja se mo¼e opisati kao generalno razu-
mevaǌe kako treba postupiti da bi se budu²e aktivnosti mogle xto boǉe au-
tomatizovati. Takva mentalna sposobnost se najboǉe stiqe programiraǌem, a
uloga programiraǌa je sliqna ulozi bavǉeǌa sportom na qasovima fiziqkog
vaspitaǌa. Ciǉ fiziqkog vaspitaǌa je sticaǌe fiziqkih sposobnosti i odgova-
raju²ih navika ǌihovog odr¼avaǌa, a u tu svrhu se praktikuju odre±eni spor-
tovi. Pri tome se uqenici ne pripremaju da postanu aktivni sportisti niti
se udubǉuju u tehniqke detaǉe sporta (detaǉna pravila, dimenzije terena, te-
hniqke karakteristike lopte, itd), ve² se zadr¼ava fokus na sticaǌu fiziqkih
sposobnosti.

Domeni primene i alati

Preostaje pitaǌe kako uqiti decu da razmixǉaju kao programeri, a da ih
pri tome ne optere²ujemo stvarima koje su potrebne samo profesionalnim pro-
gramerima niti da se zadr¼avamo na brojnim tehniqkim detaǉima koji se nalaze
,,ispod haube“. Dobar odgovor na to pitaǌe je suxtina modernog pristupa uqeǌu
programeraǌa. Dva kǉuqna dela tog odgovora su:

1. Izbor alata koji ²emo koristiti za programiraǌe, xto obiqno ukǉuquje
programski jezik i razvojno okru¼eǌe u kome uqenik oblikuje i izvrxava
program.

2. Izbor jednog ili vixe domena primene programiraǌa odakle ²e se crpiti
problemi kroz qije rexavaǌe uqimo programiraǌe. Bez dobrog odgovora na
ovaj deo pitaǌa ostaje nam ili programski jezik sa svojim brojnim tehniq-
kim detaǉima, koji onda postaje centralna tema izuqavaǌa ili klasiqni
problemi koje znamo iz sopstvenog raqunarskog obrazovaǌa, xto nas vodi ka
profesionalno-programerskom pristupu uqeǌu programiraǌa.

Modernizacija uloge raqunarskog programiraǌa 21

Ta dva dela odgovora su me±usobno povezana, jer probleme iz izabranog
domena primene treba da je mogu²e dovoǉno jednostavno i efikasno rexavati
korix²eǌem izabranog alata, tj. karakteristike alata mogu da otvore mogu²nost
izbora odre±enih domena primene.

Prve korake u programiraǌu mogu²e je napraviti i sa specijalizovanim
alatima koji koriste sopstveni posebno dizajniran programski jezik, a koji se
mo¼e zasnivati na slagaǌu grafiqkih elemenata (vizuelni programski jezik).
Kako u takvim sluqajevima mi biramo alat u celini, neki alati ovog tipa,
kao xto je Scratch1 mogu predstavǉati dobar izbor za prve korake u progra-
miraǌu, posebno kod mla±ih uzrasta. Scratch je posebno prilago±en spektru
domena primene koji obuhvata jednostavno dvodimenziono crtaǌe, dvodimenzionu
animaciju i dvodimenzione raqunarske igre, a sve sa mogu²nox²u ukǉuqivaǌa
multimedijalnih elemenata poput zvuka i videa. Alati koji su orijentisani ka
takvim domenima primene obiqno integrixu editor slike, zvuka i animacije sa
mogu²nox²u zadavaǌa delova programskog koda kojim se kontrolixe ponaxaǌe
odre±enih objekata2.

Alati kao xto je Scratch mogu biti dobar izbor za prve korake u programi-
raǌu u mla±im uzrastima, mada pre ili kasnije u uqeǌu programiraǌa dolazimo
i do klasiqnog programskog jezika.

Neki tipiqni domeni primene koje sre²emo u nastavnoj praksi, to jest kate-
gorije problema koje rexavamo programiraǌem, su:

• Zanimǉivi dvodimenzioni crte�i koji su pogodni za programsko generi-
saǌe, gde je posebna kategorija takozvana korǌaqina grafika3 qiji se koreni
obiqno vezuju za programski jezik Logo4, http://www.
cs.berkley.edu/~bh/, pri qemu je podrxka za korǌaqinu grafiku tako±e
deo standardne biblioteke nekih programskih jezika kao xto su Python5

ili Small Basic6.

• Dvodimenziona animacija i raqunarske igre, za xta se mogu koristiti
specijalizovani razvojni alati za izradu dvodimenzionih igara kao xto je
GameMaker7 (koristi sopstveni vizuelni programski jezik), specijalizova-
ne biblioteke kao xto je Alegro8 (programski jezik C/C++) ili standardani
aplikativni interfejsi za dvodimenzionu grafiku u okviru grafiqkih kori-

1http://scratch.edu/
2 Najpoznatiji xiroko korix²eni alat ovog tipa, ali koji nije posebno prilago±en potrebama

uqeǌa programiraǌa je Flex (engl. Flash, http://www.adobe.com/products/flash.html)
3 Takozvana korǌaqina grafika predstavǉa metod programiraǌa dvodimenzione grafike koji se

zasniva na metafori kretaǌa objekta koji ostavǉa trag, za xta je prvobitno korix²en lik korǌaqe,
od qega potiqe naziv. Suxtina je da se bez poznavaǌa pravouglog koordinatnog sistema i trigo-
nometrijskih funkcija, a sa jednostavnim programskim konstrukcijama, mogu nacrtati zanimǉivi
geometrijski oblici.

4Computer Science Logo Style, Brian Harvey, MIT Press (3 volumes)
5http://www.python.org/
6http://smallbasic.com/
7http://www.yoyogames.com/
8https://www.allegro.cc/

22 N. Vasiǉevi²

sniqkih interfejsa kao xto su Java 2D (programski jezik Java) i Windows
GDI+ (C++, C# ili Visual Basic).

• Trodimenziona animacija i raqunarske igre, za xta postoje i specija-
lizovani alati nameǌeni poqetnicima koji uqe programiraǌe, poput alata
Allice9 (sopstveni vizuelni programski jezik) i alati nameǌeni profesio-
nalnoj primeni koji se mogu koristiti i za uqeǌe programiraǌa, kao xto je
Unity10 (C# ili JavaScript).

• Korisniqki interfejsi u obliku formi i komponenata koje se raspore±uju
na formama, za xta se u obrazovnoj praksi kod nas najqex²e koriste alati
Visual Studio (C#, Visual Basic) i Delphi (Object Pascal).

• Izrada veb strana sa interaktivnim mogu�nostima, za xta se obiqno
koristi programski jezik JavaScript zajedno sa jezicima HTML i CSS za
opis sadr¼aja veb strane.

• Detaǉi samog programskog jezika koji se koristi tako±e mogu predstav-
ǉati izvor ideja za zadavaǌe problema, xto je posebno izra¼eno kod pro-
gramskog jezika C/C++, pri qemu je vrlo va¼no da se suvixe ne zadr¼imo
na izuqavaǌu programskog jezika, umesto izuqavaǌa programiraǌa.

• Elementarni algoritamski problemi koji se qesto formulixu kao pi-
taǌe nakon prepriqanog stvarnog ili zamixǉenog doga±aja, za xta se mo¼e
koristiti bilo koji klasiqan programski jezik.

• Takmiqarsko programiraǌe ima sliqnosti sa prethodno opisanim domenom,
a specifiqno je po tome xto je krajǌi domen primene uqex²e na takmiqeǌu
gde se programiraǌe primeǌuje da bi se postigao xto boǉi takmiqarski
rezultat. Na vixim nivoima takmiqeǌa, a posebno me±unarodnim, dominira
programski jezik C++, a podeǉena su mixǌeǌa u vezi toga da li mla±e
takmiqare treba od poqetka pripremati u jeziku C++ ili prvo koristiti
programski jezik koji ih maǌe optere²uje.

• Programiraǌe robota, kao xto je Lego Mindstorms11 sa odgovaraju²im ala-
tima za programiraǌe.

• Pravǉeǌe elektronskih i elektro-mehaniqkih sklopova koji se kontro-
lixu raqunarskim programom, za xta se sve vixe koristi mali jeftini
raqunar Raspberry Pi12 zajedno sa programskim jezikom Python.

• Domeni primene programiraǌa u gradivima drugih predmeta, kao na pri-
mer: obrada rezultata eksperimenta, statistiqka izraqunavaǌa, grafiqko
predstavǉaǌe podataka, zadaci gde formule koje qine rexeǌe zadatka treba
da pretoqimo u program, analiza teksta itd.

Svakako da prethodno navedena lista nije konaqna jer se raqunari sve vixe
koriste u raznim sferama ¼ivota i rada, a postoji i mnoxtvo zanimǉivih domena

9http://www.alice.org/
10http://unity3d.com/
11http://mindstorms.lego.com/
12http://www.raspberrypi.org/

Modernizacija uloge raqunarskog programiraǌa 23

primene koji mogu poslu¼iti kao izvor ideja za probleme koji se mogu rexavati
programiraǌem.

Kada razmixǉamo o modernizaciji uqeǌa programiraǌa, glavno je da ra-
zumemo znaqaj izbora problema koji ²e se rexavati, jer se kreativnost i mo-
tivacija za rexavaǌe problema dominantno ispoǉava u domenu primene, a ne u
programiraǌu samom po sebi. Naravno, osim ukoliko se ne bavite problemima
kao xto je projektoravǌe algoritama, ali ako krenemo takvim razmixǉaǌem brzo
²emo skliznuti u profesionalno-programerski pristup uqeǌu programiraǌa.

Na primer, kod programiraǌa robota, isti program koji kontrolixe robota
mo¼e da kontrolixe i virtuelni trodimenzioni model istog takvog robota koji
se prikazuje na ekranu. Iz perspektive programskog koda, u pitaǌu je jedan
te isti program, ali je iz perspektive domena primene razlika jednako velika
kao kada vozite avion na simulatoru i kada u realnosti vozite avion. Ose²aj
uqenika xta je postigao je potpuno drugaqiji, drugaqiji je efekat na ǌegovu
motivaciju i potpuno se razlikuje ono xto ²e na kraju uqenik zapamtiti.

Sliqno mo¼emo primetiti da je kod takmiqarskog programiraǌa domen pri-
mene sâmo takmiqeǌe na kome uqenik ¼eli da postigne xto boǉi rezultat i
motivisan je da se takmiqi sa ostalima. Bilo bi nezanimǉivo uqiti rexavaǌe
takmiqarskih zadataka i taj tip problema se ne bi ni prepoznao kao neka posebna
oblast da nema realnih takmiqeǌa. Sve u svemu, kǉuqno pitaǌe kod identifika-
cije domena primene jeste u kom trenutku uqenik ose²a zadovoǉstvo rexavaǌem
problema.

Bez zasnivaǌa uqeǌa programiraǌa na zanimǉivim problemima iz raznih
domena primene, za ve²inu uqenika programiraǌe ²e biti ili dosadno ili pre-
texko. Opxteobrazovni ciǉ uqeǌa programiraǌa treba da bude da uz malo
programiraǌa uqenik ume da rexava probleme iz raznih oblasti.

Domeni primene programiraǌa u gradivima drugih predmeta

Gradivo drugih predmeta predstavǉa znaqajan a nedovoǉno iskorix²en iz-
vor zanimǉivih problema koji se mogu rexavati uz malo programiraǌa.

Na primer, u nastavnom programu matematike za osmi razred osnovne xkole
postoji oblast ,,Grafiqko predstavǉaǌe podataka“ sa slede²im opisom sadr¼aja:
,,Predstavǉaǌe zavisnih veliqina tabelarno i u koordinatnom sistemu. Gra-
fiqko predstavǉaǌe statistiqkih podataka u obliku dijagrama (stubiqastih,
kru¼nih, . . .). Raqunaǌe sredǌe vrednosti i medijane. Pore±eǌe vrednosti
uzorka sa sredǌom vrednox²u“.

Problemi koji pripadaju na taj naqin opisanoj oblasti u praksi se rexava-
ju gotovo iskǉuqivo uz pomo² raqunara. Za to se mo¼e koristiti alat kao xto
je Microsoft Excel ili neki od alata za statistiqka, in¼eǌerska odnosno nauqna
izraqunavaǌa kao xto su Matlab13, SPSS14 ili sve popularniji alat otvorenog

13http://www.mathworks.com/products/mathlab/
14http://www.ibm.com/software/analytics/spss/

24 N. Vasiǉevi²

koda kratkog naziva R15, dok od programskih jezika opxte namene u ovoj oblasti
sve znaqajniju ulogu ima Python. Pri tome je Python generalno pogodan za uqeǌe
programiraǌa16 i od nedavno je najpopularniji programski jezik u uvodnim kur-
sevima programiraǌa na ameriqkim univerzitetima17.

Slede²i Python program formira stubiqasti dijagram za podatke o stepenu
upotrebe pojedinih programskih jezika:

from pylab import *
jezici = [’Python’, ’C++’, ’Java’, ’C#’, ’VB.NET’]
upotreba = [3.8,19,22,4.3,2]
hor pozicije = range(len(jezici))
bar(hor pozicije, upotreba, align=’center’)
xticks(hor pozicije, jezici)
ylabel(’upotreba’)
title(’Upotreba programskih jezika’)
show()

Slika 1. Stubiqasti dijagram formiran uz pomo² programa na programskom jeziku Python

15http://www.r-project.org/
16 N. Vasiǉevi², Zaxto je programski jezik Pajton dobar za uqe�e programira�a,

Infoteka 14, 1 (jun 2013), 63–76.
17Esther Stein, Python for beginners, Commun. ACM 58, 3 (2015), 19–21, http://doi.acm/

org/10.1145/2716560

Modernizacija uloge raqunarskog programiraǌa 25

Rezultat rada programa je prikazan na slici 1. Za izvrxavaǌe navedenog
programa, pored osnovne instalacije Python okru¼eǌa, potrebni su i odre±eni
dodatni moduli koji se uobiqajeno koriste za nauqna izraqunavaǌa (engl. sci-
entific computing). Najjednostavniji naqin da instalirate Python zajedno sa
raznim dodatnim modulima koji vam mogu zatrebati je da instalirate neku od
Python distribucija kao xto je Anaconda18, WinPython19 ili Python(x,y)20.

Problem sliqan prethodno opisanom je obrada rezultata eksperimenata u
fizici. Ako smo izveli eksperiment u kome smo merili vremena prolaska objekta
kroz nekoliko taqaka, obrada podataka iz tog eksperimenta, zajedno sa iscrta-
vaǌem dijagrama bi mogla da se obavi slede²im programom:

from pylab import *
vremena = [1.2, 2.9, 4.1, 6.8]
polozaji = [30, 40, 50, 80]
v, r0 = polyfit(vremena, polozaji, 1)
s = "$r = r 0 + vt$\n$r 0=0:.2f$\n$v=1:.2f$".format(v, r0)
text(1,70,s, fontsize = 20)
plot([0, 9], polyval([v, r0],[0, 9]))
scatter(vremena, polozaji)
xlim(0,9)
xticks(arange(0, 9, 1))
grid(True)
xlabel(’t’, fontsize = 20)
ylabel(’r’, fontsize = 20)
show()

Rezultat rada prethodnog Python programa je prikazan na slici 2. U pretho-
dnom programu smo koristili linearnu regresiju (poziv funkcije polyfit, gde
tre²i parametar govori da je polinom stepena jedan), raqunaǌe vrednosti poli-
noma u zadatoj listi taqaka (poziv funkcije polyval raquna vrednosti linearne
funkcije u taqkama 0 i 9), crtaǌe linijskog dijagrama (poziv funkcije plot),
crtaǌe taqkastog dijagrama (poziv funkcije scatter), kao i ispis teksta (poziv
funkcije text). Prilikom ispisa teksta mogu se zadavati matematiqke formule
u TEX-ovskoj notaciji izme±u znakova za dolar. Ostali pozivi funkcija pode-
xavaju naqin iscrtavaǌa dijagrama.

Ako ¼elimo da formiramo dokument koji sadr¼i Python kôd, rezultate izra-
qunavaǌa (grafiqki, tabelarno i sl) i tekst sa dodatnim objaxǌeǌima, mo¼emo
koristiti alat Jupyter21 koji omogu²ava struktuiraǌe izraqunavaǌa u sveske
(engl. notebook) kao xto to qini Matlab.

Prethodna dva primera bi mogla da se realizuju i sa alatima koji ne za-
htevaju programiraǌe. Me±utim, qiǌenica da je izraqunavaǌe specificirano

18http://continuum.io/
19http://winpython.github.io/
20http://python-xy.github.io/
21http://jupyter.org/

26 N. Vasiǉevi²

Slika 2. Obrada rezultata eksperimenta

programskim jezikom je znaqajna bez ozbira xto je struktura programa u datim
primerima trivijalna (qista linijska struktura). Na ovaj naqin uqenik se na-
vikava da se izra¼ava u formalnoj notaciji i upoznaje se sa znaqajem mogu²nosti
da nexto u programu promeni pa da pusti izraqinavaǌe iz poqetka, xto je bitna
karakteristika algoritamskog izra¼avaǌa.

I pored toga xto je programska struktura trivijalna, ovi primeri nisu
sasvim trivijalni, potrebno je dosta toga objasniti uqeniku pre nego xto bude
osposobǉen da samostalno rexava sliqne probleme. Tako±e, ovakve primere daǉe
mo¼emo proxiriti granaǌima, iteracijama i sliqno i to u meri u kojoj ¼elimo
da uqeniku predstavimo slo¼enije programske strukture.

Na primer, kod Python programa koji generixe stubiqasti dijagram mo¼emo
primetiti da nije pregledno da podaci o nazivima programskih jezika i o ǌihovoj
upotrebi budu u dve odvojene liste, pa mo¼emo promeniti program tako da na
poqetku stoji:

podaci = [[’Python’, 3.8], [’C++’, 19], [’Java’, 22],
[’C#’, 4.3], [’VB.NET’, 2]]

Zatim mo¼emo postaviti pitaǌe xta treba uraditi da bi promenǉive je-
zici i upotreba dobile iste one vrednosti koje su imale u prethodnoj verziji
programa. Mogu²i odgovor je:

Modernizacija uloge raqunarskog programiraǌa 27

jezici = []
upotreba = []
for p in podaci:

jezici.append(p[0])
upotreba.append(p[1])

Prime²ujemo jednostavnost rada sa elementarnim strukturama podataka u
programskom jeziku Python. Pri tome Python omogu²ava i slede²i naqin odgo-
vora na postavǉeno pitaǌe:

jezici = [p[0] for p in podaci]
upotreba = [p[1] for p in podaci]

Tu smo koristili sintaksu za konstrukciju liste koja je analogna matema-
tiqkoj notaciji za konstrukciju skupova, poput {f(p) | p ∈ P}. Bez obzira xto
se upotrebǉena sintaksa za konstrukciju liste mo¼e smatrati naprednom mo-
gu²nox²u Python-a i xto predstavǉa element stila funkcijskog programiraǌa,
za uqenika takva sintaksa mo¼e biti sasvim razumǉiva i elementarna jer je
analogna notaciji koja je uqeniku poznata iz matematike.

Ovde smo se susreli za qiǌenicom da se neke tehnike programiraǌa i ele-
menti programskog jezika tradicionalno svrstavaju u napredne, a da su analo-
gni koncepti uqenicima dobro poznati iz matematike. Tipiqan primer za to
je rekurzija, gde uqenici relativno rano u okviru nastave matematike upoznaju
rekurzivne definicije funkcija, a sa druge strane se rekurzija tradicional-
no smatra naprednom mogu²nox²u programskog jezika jox od vremena kada prvi
vixi programski jezici nisu podr¼avali rekurziju.

Ilustrovali smo xta znaqi iskoristiti domen primene programiraǌa za-
jedno sa dobrim alatom. Alat koji smo koristili u ovom sluqaju je programski
jezik Python sa skupom modula (tj. programskih biblioteka) koji podr¼avaju na-
uqna izraqunavaǌa22. Bez zanimǉivog domena primene i odgovaraju²eg alata,
koriste²i samo mogu²nosti koje donosi sam programski jezik, sa qisto line-
arnom strukturom programa uqenicima ne bismo mogli mnogo toga zanimǉivog
prikazati i ¼urili bismo da ih nauqimo slo¼enijim programskim strukturama
kako bismo uopxte imali xta da im priqamo. S druge strane i domen primene
treba da ima smisla, da sam po sebi predstavǉa nexto xto je vredno izuqavati,
zbog qega domeni primene iz postoje²eg gradiva raznih predmeta imaju znaqajan
potencijal.

Ovakvi kratki programi koji su pisani za rexavaǌe odre±enog zadatka ko-
riste²i gotove mogu²nosti visokog nivoa, gde programski kôd zameǌuje komande
koje bismo u nekom drugom sluqaju zadavali kroz korisniqki interfejs, spadaju
u kategoriju programa koje nazivamo skriptama.

Skripte tipiqno nemaju dodatan korak kompilacije izme±u ure±ivaǌa teks-
ta programa i izvrxavaǌa. Programske jezike koji su pogodni za programi-
raǌe skripti nazivamo skriptnim jezicima. Glavna tehniqka karakteristika

22http://www.scipy.org/

28 N. Vasiǉevi²

skriptnih jezika je da spadaju u programske jezike koji se interpretiraju, a ne
kompiliraju, mada se ,,ispod haube“ mo¼e desiti odre±ena kompilacija pre iz-
vrxavaǌa, ali tako da onaj ko pravi i koristi skripte o tome ne mora da vodi
raquna.

Skriptni jezici su posebno pogodni za uqeǌe programiraǌa uz primere iz
specifiqnih domena primene. Razlog tome je xto oni koji razvijaju biblioteke
za skriptni jezik za podrxku odre±enim domenima primene imaju na umu sluqajeve
korix²eǌa biblioteke gde u kratkom skriptu treba rexiti praktiqan problem.

Mnoge aplikacije imaju mogu²nost automatizovaǌa operacija koje nude ko-
risnicima tako xto korisnicima nude i mogu²nost pisaǌa skripti. Na primer,
Microsoft Office aplikacije za tu svrhu koriste programski jezik Visual Basic for
Application (VBA).

Prednost programskog jezika Python u odnosu na programske jezike poput
VBA jeste qiǌenica da je Python programski jezik opxte namene koji je generalno
dobar za uqeǌe programiraǌa i za koji postoji xiroki spektar modula za razne
domene primene. Kada uqenik savlada programski jezik Python, uz mali dodatni
napor upoznaje razne takve module.

To naravno ne znaqi da nema smisla upoznavati se i sa specifiqnim meha-
nizmima automatizacije rada u pojedinim aplikacijama, a posebno za aplikacije
koje se ve² obra±uju u nastavi. Ovim dotiqemo jox jedan domen primene iz po-
stoje²eg gradiva raznih predmeta, a to su raqunarske aplikacije koje u nastavi
obra±ujemo sa korisniqkog aspekta, a u kojima postoje odre±ene mogu²nosti auto-
matizacije obrade. U toj kategoriji se posebno istiqe Excel. Bilo bi korisnije
da uqenik nauqi da dobro koristi formule u Excel-u, a da se na raqun toga smaǌi
broj ostalih aplikacija koje uqenik upoznaje kroz nastavu.

Prostor za primenu programiraǌa u gradivima raznih predmeta treba tra-
¼iti i na mestima gde je primena tehnologije u rexavaǌu zadataka stigla do
kalkulatora. Za poqetak, ako Python koristimo u interaktivnom re¼imu (Python
shell), onmo¼e da nam zameni kalkulator. Na primer:

>>> 2+2
4

,,>>>“ je odzivni znak (engl. prompt) koji stoji ispred onoga xto smo otku-
cali. Nakon pritiska na Enter u slede²oj liniji se ispisuje rezultat.

Kalkulator qesto koristimo u rexavaǌu zadataka poput: ,,Ako je qovek to-
kom vremena t = 3,5 sec prexao put od s = 4,5 m, kolika mu je proseqna br-
zina?“ Formula za brzinu je v = s/t, pa kad zamenimo brojeve i to unesemo u
,,kalkulator“ dobijamo:

>>> 4.5/3.5
1.2857142857142858

Pajton je ,,pametniji“ od obiqnog kalkulatora, pa mo¼emo pisati i:

Modernizacija uloge raqunarskog programiraǌa 29

>>> t=3.5
>>> s=4.5
>>> s/t
1.2857142857142858

Ako imamo rezultate pet mereǌa vremena za koje je qovek pretrqao 100 me-
tara, ovako bismo mogli da izraqunamo brzine:

>>> merenja = [15.3, 11.7, 21.9, 13.2, 14.6]
>>> s = 100
>>> [s/t for t in merenja]
[6.5359477124183005, 8.547008547008547, 4.566210045662101,
7.575757575757576, 6.8493150684931505]

Svaki zadatak iz fizike u kome date veliqine nemaju zadate konkretne vre-
dnosti, tako da zadatak treba rexiti u opxtim brojevima, mo¼e se formulisati
kao programerski zadatak. Ako pri rexavaǌu zadatka treba razlikovati vixe
sluqajeva, tada programsko rexeǌe ukǉuquje granaǌe, na primer, ako treba raz-
likovati da li se dve kuglice me±usobno sudaraju pre ili nakon xto prva udari
u zid. Nije texko napraviti primer gde su nam pri rexavaǌu zadatka potre-
bni iteracija i nizovi, dovoǉno je da imamo ve²i broj objekata sa razliqitim
svojstvima ili da imamo ve²i broj faza u doga±aju iz zadatka (na primer vixe
sudaraǌa objekata).

U programskom jeziku Python je mogu²e i simboliqko raqunaǌe uz pomo²
SymPy23 modula. Primeri korix²eǌa SymPy modula u okviru Jupyter QtCon-
sole su prikazani na slici 3. Uqenicima mo¼emo zadavati zadatke u qijem se
rexavaǌu Python koristi kao simboliqki kalkulator, ali tako da i uqenici
moraju da naprave neke matematiqke zakǉuqke.

Osim primera koje smo ovde izlo¼ili, Python sa odgovaraju²im dodatnim
modulima ima dobru podrxku za statistiqka izraqunavaǌa, linearnu algebru,
numeriqke metode, ali i podrxku za domene primene koji nisu toliko neposredno
vezani za matematiku, kao xto je obrada slike, obrada geoprostornih podataka
ili obrada prirodnog jezika.

Takmiqarsko programiraǌe

Paralelno sa pribli¼avaǌem osnovnih ideja programiraǌa xirem krugu
uqenika kroz pogodan izbor domena primene i alata koji se koriste, uqenici-
ma kod kojih se prepozna talenat za programiraǌe treba omogu²iti da znatno
temeǉnije nauqe programiraǌe jox u osnovnoj xkoli. Po tom pitaǌu postoji
sliqnost sa muziqkim obrazovaǌem: talentovani uqenici u muziqkim xkolama
su u staǌu da savladaju mnogo slo¼enije gradivo nego ǌihovi vrxǌaci u okviru
redovne nastave muziqkog obrazovaǌa.

23http://www.sympy.org/

30 N. Vasiǉevi²

Slika 3. Primeri korix²eǌa SymPy modula u okviru Jupyter QtConsole

Kao i u mogim drugim predmetima, poqevxi od matematike, takmiqeǌa su
va¼no sredstvo da se najtalentovaniji uqenici zainteresuju i da razvijaju svoj
talenat u odre±enoj oblasti. Takmiqeǌa imaju svojih nedostataka i ograniqeǌa,
koja se ogledaju u qiǌenici da se oblast izuqavaǌa su¼ava na probleme koji su
pogodni za takmiqeǌa i da od uqenika zahtevaju posebne takmiqarske vextine.
To sve treba imati u vidu, ali to nisu dovoǉni razlozi da se negira znaqaj
takmiqeǌa za podsticaǌe razvoja talentovanih uqenika. Po tome se takmiqeǌa
iz programiraǌa suxtinski ne razlikuju od takmiqeǌa iz drugih predmeta.

Specifiqno za takmiqeǌa iz programiraǌa je da priprema za takmiqeǌe
zahteva poseban pristup uqeǌu programiraǌa za uqenike u osnovnim i sredǌim
xkolama i da ne postoji dovoǉno literature koja je prilago±ena za takav pri-
stup, xto postavǉa visoke zathteve pred nastavnika koji treba da priprema uqe-
nike za takmiqeǌe.

Modernizacija uloge raqunarskog programiraǌa 31

Zakǉuqak

Glavni pravac modernizacije uloge programiraǌa u obrazovaǌu treba da
bude pribli¼avaǌe domenima primene. Potrebno je napraviti spoj programi-
raǌa i korisniqkog pristupa uqeǌu alata. Kod korisniqkog pristupa dominira
domen primene: u programu za crtaǌe pravimo zanimǉive crte¼e, u programu za
obradu video materijala pravimo filmove, itd. Razlog zbog koga postoji potre-
ba da xira populacija ima osnovne predstave o programiraǌu treba ujedno da
bude i vodiǉa kako programiraǌe uqiti kao opxteobrazovni predmet, a to je kao
praktiqno sredstvo za rexavaǌe raznih problema.

Svaki pristup uqeǌu programiraǌa pretpostavǉa postojaǌe alata koji omo-
gu²avaju takav pristup. Nakon xto iza±emo iz okvira specijalizovanih alata
dobro prilago±enih za prve korake u programiraǌu, kao xto je Scratch, dolazimo
do toga da nam je potreban skriptni jezik koji je istovremeno dovoǉno jednostavan
za uqeǌe, dovoǉno izra¼ajan i nad kojim su nadogra±eni alati za razne domene
primene. Pri tome kao posebno znaqajan izvor domena primene treba imati u
vidu gradiva drugih predmeta.

E-mail : nebojsa.vasiljevic@gmail.com

