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JOX JEDNO POBOǈXAǋE OJLEROVE NEJEDNAKOSTI

U matematiqkoj literaturi o geometrijskim nejednakostima veoma va¼nu
ulogu ima Ojlerova nejednakost za trougao koja glasi

(1) R > 2r,

gde su R i r radijusi opisane i upisane kru¼nice trougla ABC. Ona ima veliku
primenu kod dokazivaǌa drugih nejednakosti koje se odnose na trougao. Recimo
jox da se u [1]–[4] nalazi vixe poboǉxaǌa ove nejednakosti koja glase:

R

r
> b

c
+

c

b
,

R

r
> 2

3

(a

b
+

b

c
+

c

a

)
,

R

r
> 2(a2 + b2 + c2)

ab + bc + ca
,

R

r
> (a + b)(b + c)(c + a)

4abc
,

R

r
> 2ma

ha
,

2r

R
6 cos2

β − γ

2
,

R

r
>

√
2(a2 + b2)(b2 + c2)(c2 + a2)

2abc
.

U ovom radu ²emo dati jox jedno poboǉxaǌe nejednakosti (1). Napiximo
tu nejednakost u ekvivalentnom obliku
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Dokaza²emo da va¼i nejednakost

(3)
r

R
6 2 sin

α

2

(
1− sin

α

2

)
,

gde je α ∈ (0, π) bilo koji od uglova datog trougla. Oqigledno, nejednakost (3)
je boǉa (jaqa) od nejednakosti (2) jer va¼i

2 sin
α

2

(
1− sin

α

2

)
6 1

2
⇐⇒ 4 sin2 α

2
− 4 sin

α

2
+ 1 > 0 ⇐⇒

(
2 sin

α

2
− 1

)2

> 0,

a posledǌa nejednakost je taqna. Jednakost va¼i ako i samo ako je 2 sin
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Doka¼imo sada nejednakost (2). Pre toga ²emo dati dva razliqita dokaza
trigonometrijske jednakosti za trougao:

(4) sin
α

2
sin

β

2
sin

γ

2
=

r

4R
.

Slika 1

Dokaz 1. Neka je I centar upisane kru¼nice u trougao ABC, a K dodirna
taqka te kru¼nice i stranice AB (sl. 1). Na osnovu sinusne teoreme va¼i
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Posledǌa jednakost se mo¼e napisati u obliku
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Dokaz 2. Imamo poznate obrasce
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a odavde
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odnosno, koriste²i poznate obrasce P =
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Doka¼imo sada nejednakost
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Zaista, imamo
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Najzad, doka¼imo nejednakost (3). Iz (4) i (5) dobijamo
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, xto je i trebalo dokazati.
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