
NASTAVA MATEMATIKE

LXIV, 1-2 (2019), 3–12

Dr Dragan Maxulovi�

PRIMENA RAQUNARSKOG PROGRAMIRAǋA
U NASTAVI MATEMATIKE1

1. Uvod

Automatizacija poslovnog okru¼eǌa je priqa stara nekoliko vekova. Ono
sa qim se danas suoqavamo, i xto ²e mnogo intenzivnije pogoditi populaciju,
jeste automatizacija svakodnevnih aktivnosti koju donose digitalni asistenti
(kao xto su Siri kompanije Apple, asistent kompanije Google, i Amazon Alexa)
i Internet of Things. Eksponencijalno ubrzaǌe trenda automatizacije ima dve
va¼ne posledice:

• sve trivijalne poslove ²e preuzeti maxine (na primer, Amazon Go pro-
davnice, autonomni automobili), i

• postaje skoro nemogu²e predvideti xta ²e biti kǉuqni/dobro pla²eni pos-
lovi u bliskoj budu²nosti.

S druge strane, izlo¼enost uqenika modernim (pre svega mobilnim) tehno-
logijama ne doprinosi razvoju digitalnih kompetencija. Razlog za to je veoma
jednostavan. Omasovǉavaǌe tehnologije kao proces poteklo je od tehnoloxkih
kompanija, a ne od dr¼avnih sistema. Zato je kao osnovni ciǉ postavǉen pro-
fit kompanija, a ne unapre±ivaǌe digitalnih kompetencija populacije. U ciǉu
maksimizovaǌa profita kompanije razvijaju proizvode koji odgovaraju teku²em
staǌu digitalnih kompetencija stanovnixtva. U tu svrhu se analiziraju najqex-
²i sluqajevi korix²eǌa (use cases) i lansiraju proizvodi koji rade taqno ono
xto je oceǌeno kao potreba proseqnog korisnika. Da bi se uz to minimizovale
potencijalne pravne zavrzlame, nastaju korporacijske strategije koje ohrabru-
ju korisnika da proizvod koristi samo na naqin koji je predvideo proizvo±aq.
Korisnik se obeshrabruje da bude inventivan. Nema intelektualnih izazova –
korisnik treba da bude konzument tehnologije.

1Plenarno izlagaǌe na Dr¼avnom seminaru DMS, Beograd, 2019. god.

4 D. Maxulovi²

2. Cogito, ergo sum!

U svetlu toga, danas vixe nego ikada do sada uoqavamo u kojoj meri Dekar-
tova misao Cogito, ergo sum! dobija na va¼nosti. Mi, nastavnici, treba da
pripremimo danaxǌe uqenike za ono xto ih qeka u budu²nosti. Zato je danas,
na poqetku 21. veka, glavna misija nastavnika da:
• osposobi uqenike da kompetentno komuniciraju sa maxinama kojima ²e biti

okru¼eni u svakom aspektu svog ¼ivota, i
• osna¼i uqenike da sami rade na razvoju specifiqnih kompetencija u skladu

sa zahtevima svog budu²eg radnog okru¼eǌa fokusiraǌem na fundamentalne
vextine 21. veka – rexavaǌe problema i algoritamsko mixǉeǌe.
To ne treba i ne sme da bude misija samo nastavnika informatike, ve²

obaveza svih nas koji radimo u obrazovaǌu nezavisno od toga koji predmet preda-
jemo. Ve² u bliskoj budu²nosti na²i ²emo se u situaciji da ²e oni koji ne budu
mogli da se uhvate u koxtac sa zahtevima digitalne svakodnevice biti gurnuti
na margine druxtva. (U prilog ovoj bojazni govori sve glasnija diskusija o
uvo±eǌu minimalne plate za sve punoletne gra±ane – universal basic income –
u bogatim zapadnim dr¼avama.) Mi, nastavnici, ne smemo dozvoliti da budu²e
druxtvo oceni nax rad kao pru¼aǌe u osnovi irelevantnih vextina i sposobnos-
ti, i da time sebe svedemo na vaspitaqe u dnevnom boravaku za budu²i druxtveni
balast!

3. Moderan uqenik – tradicionalna nastava

Tradicionalni modeli nastave matematike sve maǌe daju efekte u obrazo-
vaǌu digitalnih generacija uqenika koji su kroz upotrebu modernih tehnologija
navikli na stav

“I want it all, and I want it now”.

Kǉuqne sposobnosti i kǉuqni unutraxǌi motivatori za uqeǌe su u padu:
uqenici su sve maǌe radoznali, smaǌuje se mogu²nost dr¼aǌa pa¼ǌe i smaǌuje
se ¼eǉa za samostalnim tragaǌem za rexeǌem. Tako dobijamo konflikt:

Moderan uqenik – Tradicionalna nastava.

Tradicionalni formalistiqki pristup nastavi, a pre svega nastavi mate-
matike, nije znaqajnije meǌan najmaǌe posledǌa dva veka i postaje sve jasnije da
tako organizovano pouqavaǌe matematike nije primereno modernim digitalnim
generacijama.

Umesto toga treba pre²i na vo±enu strategiju pokuxaja i grexke. Nastava
pre svega u osnovnoj xkoli ne treba da bude formalizovana. Treba dati pri-
oritet intuitivnom usvajaǌu koncepata i insistirati na ideji i procesu koji
vode ka rexeǌu, a ne na formalnom zapisu rexeǌa. Operativno, to znaqi da:
(1) nastavnik ne objaxǌava deklarativno, ve² intuitivno;
(2) uqenik se odmah stavǉa u kontekst u kome mora da rexava probleme;

Primena raqunarskog programiraǌa 5

(3) nastavnik se obra²a uqeniku korektnim jezikom;
(4) uqenik odgovara kako zna i ume;
(5) nastavnik ispravǉa ,,jeziqke“ grexke bez kazne, pa iz poqetka.

Zato qak i u nastavi matematike postaje sve aktuelniji stav da na nivou opx-
teg obrazovaǌa znaǌe treba sticati eksperimentisaǌem, iz iskustva i mnoxtva
primera (problemski/projektno orijentisana nastava)! Formalni aspekt matema-
tiqkog znaǌa, koji je nezaobilazan i od koga nipoxto ne smemo odustati, mora,
me±utim, da postane predmet vaspitnog, a ne obrazovnog segmenta u nastavi
matematike!

4. Zaxto nastavnik treba da predaje uz raqunar?

Razvoj i pristupaqnost savremenih raqunarskih tehnologija je omogu²io da
se profesionalni matematiqari sve vixe u svom radu oslaǌaju na raqunare.
Na taj naqin se efikasno proveravaju hipoteze (npr. Rimanova hipoteza, i do
nedavno Velika Fermaova hipoteza) i sve qex²e se u nauqnim radovima javǉaju
dokazi koji se oslaǌaju na hiǉade sati rada raqunara. Ovaj trend je krenuo sa
dokazom Problema qetiri boje koga su 1976. prikazali Apel i Haken, a danas
se smatra potpuno ravnopravnom strategijom. Nema nikakvog razloga da se ovaj
trend iskǉuquje iz savremene nastave matematike! U skladu sa tim, jedan od
naqina da se nastava matematike pribli¼i savremenim generacijama vidimo u
tome da se u nastavu matematike uvede eksperiment.

Eksperiment u nastavi matematike mo¼e da poslu¼i kao sredstvo za uo-
qavaǌe fenomena i kao sredstvo za ispitivaǌe fenomena, dok nepotpunost eks-
perimentalne metode (,,proverio sam nekoliko primera; ko mi garantuje da to
radi uvek?“) mo¼e da poslu¼i kao kǉuqni motiv za neophodnost strogog matem-
atiqkog rezonovaǌa. Od nedavno u osnovnim xkolama u Republici Srbiji je
nastava informatike postala obavezna, a kao osnovni programski jezik odabran
je programski jezik Python kao jednostavan programski jezik sa velikom bazom
besplatno dostupnih alata koji se redovno odr¼ava i unapre±uje. Javno dos-
tupni i besplatni materijali za programski jezik Python postoje qak i na srp-
skom jeziku. Fondacija Petǉa je na sajtu www.petlja.org za programski jezik
Python obezbedila kompletnu podrxku na srpskom jeziku koja obuhvata uputst-
vo za instalaciju, uputstvo za nastavnike, sintaksni podsetnik za programski
jezik, priruqnik za programiraǌe, metodiqku zbirku algoritamskih zadataka i
jox mnogo toga.

Uz vrlo malo poqetnog ulagaǌa ve² u ni¼im razredima osnovne xkole Py-
thon mo¼e da se ukǉuqi u izvo±eǌe nastave matematike prosto kao kalkulator.
Tako uqenici stiqu osnovne vextine (pokretaǌe programskog okru¼eǌa, sintaksa
algebarskih izraza) koje ²e im kasnije u velikoj meri olakxati prve korake u
programiraǌu. Poka¼imo tri primera kojima se rexavaju zadaci na nivou 4.
razreda osnovne xkole.

Primer. Milox ima 850 dinara, Milica 420 vixe od ǌega, a Zoran 270
dinara maǌe od Miloxa. Koliko novca imaju zajedno?

6 D. Maxulovi²

Rexeǌe (papir). 850 + (850 + 420) + (850− 279)
Rexeǌe (raqunar).

> 850 + (850 + 420) + (850 − 279)

Primer. Ana je kupila 16 bombona, Bojana za 7 maǌe od Ane, a Vesna dva
puta vixe nego Ana i Bojana zajedno. Koliko bombona su kupile sve tri zajedno?

Rexeǌe (papir).

A = 16
B = A− 7 = 9

V = 2(A + B) = 2(16 + 9) = 50
A + B + V = 16 + 9 + 50 = 75.

Rexeǌe (raqunar).
> Ana = 16

> Bojana = Ana − 7

> Vesna = 2 (Ana + Bojana)

> print(Ana + Bojana + Vesna)

Primer. Izme±u nekih od cifara upisati neki od simbola + ili − tako
da se dobije taqna jednakost: 1 2 3 4 5 6 7 8 9 = 100

Rexeǌe (papir). Uz malo mozgaǌa dolazimo do rexeǌa 1+2+3−4+5+6+78+9 =
100.
Rexeǌe (raqunar). Na nivou 4. razreda osnovne xkole ovaj zadatak nije lako
rexiti pomo²u raqunara.

Tako ve² u ni¼im razredima osnovne xkole vidimo da je mogu²e i potrebno
diskutovati sa uqenicima o mogu²nosti rexavaǌa problema pomo²u raqunara.
Neki problemi se, prosto, ne mogu lako rexiti pomo²u raqunara. To nastavniku
daje odliqan motiv da sa uqenicima prodiskutuje nekoliko va¼nih tema:
• postoje problemi koji se lako mogu rexiti pomo²u raqunara,
• postoje problemi koji se ne mogu lako rexiti pomo²u raqunara,
• pa qak i oni koji se uopxte ne mogu rexiti pomo²u raqunara (maxine nisu

svemogu²e).
S druge strane, to ne znaqi da treba da odustanemo od upotrebe raqunara

kao sredstva u svakoj prilici u kojoj raqunar mo¼e da pomogne. Na taj naqin nas-
tavnik pravi prve korake u izgradǌi zdravog odnosa uqenika prema raqunarskoj
tehnologiji.

U petom razredu uqenici poqiǌu sistematski da uqe programiraǌe koriste-
²i vizuelno programsko okru¼eǌe Scratch. U tom trenutku je pogodno u nastavu
matematike, pre svega kada se rade nastavne teme vezane za geometriju, uvesti ne-
ki sistem za dinamiqku geometriju kao xto je GeoGebra. Sistemi za dinamiqku

Primena raqunarskog programiraǌa 7

geometriju bi trebalo da budu kǉuqni alat nastavnika matematike sve dok se
nastava geometrije oslaǌa na demonstraciju fenomena, pre nego na formalno
dokazivaǌe. Recimo, uqenicima se prvo demonstrira qiǌenica da se prave koje
sadr¼e visine trougla seku u jednoj taqki, a dokaz ovog stava uqenici mo¼da
i ne²e videti u osnovnoj xkoli. Ukoliko ovu demonstraciju organizujemo kao
eksperiment u kome se oqekuje da se uqenici, koji su jox uvek relativno nevex-
ti u upotrebi geometrijskog pribora, sami uvere da se prave koje sadr¼e vi-
sine trougla seku u jednoj taqki mo¼emo lako sebe dovesti u situaciju da bar
jedan uqenik, usled loxe konstrukcije, ne do±e do ¼eǉenog zakǉuqka. Time je
pedagoxka funkcija eksperimenta izgubǉena. Nastavnik ²e, u najboǉem sluqa-
ju prese²i daǉu diskusiju, dogmatizovati ovaj fenomen, i izgubiti interes jox
jednog uqenika. U onom drugom sluqaju nastavnik ²e pokuxati da razrexi dile-
mu tako xto ²e uqeniku re²i (najverovatnije glasno i pred celim razredom) da je
pogrexio, i da je grexka posledica ǌegovog nevextog korix²eǌa geometrijskog
pribora, i tako sigurno izgubiti jox jednog uqenika.

Da bi eksperiment uspeo potrebno je da ga izvede nastavnik uz upotrebu
nekog softverskog alata za precizne konstrukcije kako bi uqenici videli da je
to zaista tako, a onda mo¼e zatra¼iti od uqenika da ponove eksperiment u svojoj
svesci uz upotrebu xestara i leǌira. U ovom drugom scenariju, ukoliko se kod
nekog uqenika tri prave ne preseku u jednoj taqki nastavnik mo¼e da deluje brzo
i umiruju²e: ,,Videli smo da se prave zaista seku kada sliku crta maxina. Zato
danas zanimaǌa kao xto su in¼eǌeri i arhitekte iskǉuqivo koriste raqunare
za precizne konstrukcije.“

U xestom razredu (i kasnije) uqenici ve² stiqu sistematizovano poznavaǌe
osnova programiraǌa i pred ǌih se mogu postaviti problemi koji su mnogo vixe
usmereni ka uvo±eǌu eksperimenta u nastavu matematike. Navex²emo sada dva
vezana primera. U prvom primeru uqenik mo¼e lako eksperimentom da do±e do
odgovora. Drugi primer postavǉa uqenika u situaciju gde matematiqki model
problema predstavǉa efikasniji put ka rexeǌu.

Problem. Milox u prvom tromeseqju iz muziqkog ima dve petice i jednu
dvojku. Koliko petica jox Milox treba da dobije da bi nastavnik morao da mu
zakǉuqi pet na polugodixtu?

Rexeǌe (raqunar-eksperiment). Napixemo funkciju koja raquna prosek liste:
def prosek(L):

return sum(L)/len(L)

i onda pustimo uqenike da se poigraju:
print(prosek([5,5,2]))

print(prosek([5,5,2,5]))

print(prosek([5,5,2,5,5]))

itd

Rexeǌe (papir-egzaktno). Rexiti nejednaqinu

(5 + 5 + 2 + 5n) : (n + 3) > 4,50.

8 D. Maxulovi²

Problem. U jednoj generaciji ima 150 uqenika. Na prvom pismenom zadatku
iz matematike u toj generaciji niko nije dobio ocenu 1, 42 uqenika je dobilo
ocenu 2, a 48 uqenika ocenu 3. Koje ocene treba da dobiju ostali uqenici u
generaciji kako bi prosek generacije na tom pismenom bio barem 3,50?
Rexeǌe (raqunar-eksperiment). U ovom sluqaju nije lako rexiti zadatak bez
dubǉeg poznavaǌa posebnosti programskog jezika Python.
Rexeǌe (papir-egzaktno). S druge strane rexeǌe na papiru i daǉe prati istu
logiku. Potrebno je rexiti nejednaqinu

(42 · 2 + 48 · 3 + 4 · n + 5 · (60− n)) : 150 > 3, 50.

Kroz eksperiment uqenik stiqe ose²aj o tome kako se neki fenomen (recimo,
prosek) ponaxa. Igraǌe na raqunaru mo¼e da pomogne u rexavaǌu jednostavnijih
problema, ali ne mo¼e (bez mnogo dodatnog znaǌa iz programiraǌa) da pomogne
u rexavaǌu slo¼enih problema. Tako eksperiment u nastavi matematike mo¼emo
da upotrebimo da istovremeno razumemo pojam, ali i da motivixemo rigorozno
matematiqko rezonovaǌe, odnosno, potrebu da se fenomeni opisuju matematiqkim
modelima. Dok eksperiment poma¼e u sticaǌu intuicije u vezi sa fenomenom,
tek formiraǌe modela omogu²uje da se ponaxaǌe fenomena u potpunosti razume.

Pred kraj osnovne xkole, ili poqetkom sredǌe xkole, matematiqki problemi
qije rexeǌe pomo²u raqunara je bilo izvan dometa programerskih sposobnosti
uqenika sada mogu postati dobar motiv za demonstraciju potrebe za algoritam-
skim razmixǉaǌem u nastavi matematike i za savladavaǌem nekih programerskih
tehnika. Evo nekoliko primera.

Primer. Dexifrovati sabiraǌe:
BOR + · · · + BOR = ŠUMA,

gde razliqitim slovima odgovaraju razliqite cifre. U xumi treba da bude bar
dva bora, a mo¼e ih biti proizvoǉno mnogo.

Rexeǌe. Ovaj zadatak nije lako rexiti na papiru zato xto ima 1260 rexeǌa.
Sva rexeǌa se pomo²u raqunara mogu na²i ovako (tako i znamo da ih ima 1260):

for bor in range(100, 999):

if razlCifre(bor):

for k in range(2, 9999 // bor + 1):

suma = k * bor

if razlCifre(1000 * suma + bor):

print(k, "*", bor, "=", suma)

Funkcija razlCifre proverava da li su sve cifre nkog broja razliqite i mo¼e
se implementirati, recimo, ovako:

def razlCifre(n):

c = [0,0,0,0,0,0,0,0,0,0]

while n > 0:

Primena raqunarskog programiraǌa 9

k = n % 10

n = n // 10

c[k] += 1

for i in range(len(c)):

if c[i] >= 2: return False

return True

Primer. Posmatrajmo polinom f(n) = n2 − 79n + 1601. Lako se proverava
da su f(0) = 1601, f(1) = 1523, f(2) = 1447 i f(3) = 1373 prosti brojevi.

(a) Na²i broj n sa osobinom da f(n) nije prost broj.
(b) Na²i najmaǌi broj n sa osobinom da f(n) nije prost broj.

Rexeǌe (papir). (a) Oqito je f(1601) = 16012− 79 · 1601+1601 = 1601 · (1601−
79 + 1).

(b) Ovaj zadatak nije lako rexiti bez upotrebe raqunara.
Rexeǌe (raqunar-eksperiment). Proveri²emo da li je to taqno za prvih neko-
liko vrednosti, recimo ovako:

for n in range(100):

print(n, prost(n*n - 79*n + 1601))

Tako lako dobijamo da ve² za n = 80 broj f(n) nije prost. Funkciju prost
koja proverava da li je broj prost mo¼e napisati nastavnik kao pomo² prilikom
izvo±eǌa eksperimenta, ili mo¼e dati uqenicima da je napixu ukoliko se radi
o posebno motivisanoj grupi uqenika:

def prost(n):

if n <= 1: return False

if n == 2 or n == 3: return True

if n % 2 == 0: return False

d = 3

while d < n:

if n % d == 0: return False

d += 2

return True

Prethodni primer mo¼e biti interesantan i kada se obra±uje matematiqka
indukcija, jer pokazuje da iako je neko tvr±eǌe taqno za n = 0, n = 1, n = 2,
. . . , n = 79, to i daǉe ne znaqi da je to tvr±eǌe taqno za svako n.

U posledǌa dva primera koristimo naprednije programerske vextine za
generisaǌe kombinatornih konfiguracija, varijacija sa ponavǉaǌem u prvom,
odnosno, permutacija u drugom primeru. Ukoliko se odluqi da ova dva primera
poka¼e u odeǉeǌu u kome uqenici jox uvek nisu stekli odgovaraju²e programer-
ske vextine, nastavnik mo¼e uqenicima dati pomo²nu funkciju koja generixe

10 D. Maxulovi²

narednu konfiguraciju i pokazati kako se ona koristi da bismo proverili sve
mogu²nosti.

Primer. Izme±u nekih od cifara upisati neki od simbola + ili − tako
da se dobije taqna jednakost: 1 2 3 4 5 6 7 8 9 = 100.

Rexeǌe (raqunar). Niz op sadr¼i niz operacija koje treba umetnuti izme±u
cifara. Operacije + i − imaju standardno znaqeǌe, dok prazan string oznaqa-
va da ²e odgovaraju²e cifre biti ,,slepǉene“ kako bi formirale vixecifreni
broj. Niz op se tokom rada programa meǌa sistematski tako da se isprobaju sve
mogu²nosti. Operacija ²e prvo iz staǌa + pre²i u staǌe −, a onda ²e iz staǌa
− pre²i u prazan string. Glavni program se vrti u while petǉi isprobavaju²i
sve opcije dok ne do±e u situaciju da su sve operacije svedene na prazan string.
Tada se rad programa zavrxava. Program radi tako xto izme±u cifara ume²e
operacije i potom pozivom funkcije eval raquna vrednost tako dobijenog izraza.

op = ["+", "+", "+", "+", "+", "+", "+", "+"]

while op != ["", "", "", "", "", "", "", ""]:

s = "1" + op[0] + "2" + op[1] + "3" + op[2]

+ "4" + op[3] + "5" + op[4] + "6" + op[5]

+ "7" + op[6] + "8" + op[7] + "9"

if eval(s) == 100: print(s, "= 100")

sledeci niz(op)

Pomo²na funkcija sledeci niz od datog niza operacija generixe naredni u lek-
sikografskom poretku.

def sledeci niz(op):

i = 0

while op[i] == "":

op[i] = "+"

i += 1

if op[i] == "+": op[i] = "-"

elif op[i] == "-": op[i] = ""

Primer (V. Andri²). Rasporediti cifre 1, 2, 3, 4, 5, 6, 7, 8, 9 u ku²ice u
izrazu ispod tako da se dobije niz taqnih jednakosti:

¤−¤ = ¤ + ¤ = ¤ ·¤ = ¤¤ : ¤

Rexeǌe (raqunar). Rexeǌe zadatka se svodi na to da generixemo sve permutacije
skupa {1, 2, 3, 4, 5, 6, 7, 8, 9} i da isprobamo svaku.

p = [1,2,3,4,5,6,7,8,9]

while p != [9,8,7,6,5,4,3,2,1]:

if p[0] > p[1]:

Primena raqunarskog programiraǌa 11

a = p[0] - p[1]

b = p[2] + p[3]

c = p[4] * p[5]

d = (10 * p[6] + p[7]) / p[8]

if a == b and b == c and c == d:

print(p)

sledeca perm(p)

Generisaǌe permutacija leksikografski je zahtevan programerski zadatak i u
ovom sluqaju mislimo da bi bilo primereno da nastavnik uqenicima predstavi
pomo²nu funkciju koja to radi za ǌih.

def sledeca perm(p):

n = len(p)

i = n-2

while p[i] > p[i+1]: i -= 1

j = i + 1

k = n - 1

while j < k:

p[j], p[k] = p[k], p[j]

j += 1

k -= 1

j = i + 1

while p[i] > p[j]: j += 1

p[i], p[j] = p[j], p[i]

return p

5. Zakǉuqak

Razvoj digitalnih kompetencija modernih generacija uqenika ne treba i ne
sme da bude misija samo nastavnika informatike, ve² obaveza svih nas koji radi-
mo u obrazovaǌu nezavisno od toga koji predmet predajemo. Matematika pru¼a
jedno od prvih i najva¼nijih izvorixta ideja koje omogu²uju fokus na razvoj
vextina potrebnih za rexavaǌe apstraktnih problema i algoritamsko mixǉeǌe.
Tradicionalni (formalistiqki) pristup nastavi matematike sve maǌe pogodu-
je modernim digitalnim generacijama. Qak i u nastavi matematike postaje sve
aktuelniji stav da na nivou opxteg obrazovaǌa znaǌe treba sticati eksperi-
mentisaǌem, iz iskustva i mnoxtva primera (problemska/projektna nastava).
Formalni aspekt matematiqkog znaǌa, koji je nezaobilazan i od koga nipoxto ne
smemo odustati, mora, me±utim, da postane predmet vaspitnog, a ne obrazovnog
segmenta u nastavi matematike!

12 D. Maxulovi²

Eksperiment u nastavi matematike mo¼emo da upotrebimo da istovremeno
razumemo pojam, ali i da motivixemo rigorozno matematiqko rezonovaǌe, odnos-
no, potrebu da se fenomeni opisuju matematiqkim modelima. Dok eksperiment po-
ma¼e u sticaǌu intuicije u vezi sa fenomenom, tek formiraǌe modela omogu²uje
da se ponaxaǌe fenomena u potpunosti razume. Pred kraj osnovne xkole, ili po-
qetkom sredǌe xkole, matematiqki problemi qije rexeǌe pomo²u raqunara je
bilo izvan dometa programerskih sposobnosti uqenika sada mo¼e postati do-
bar motiv za demonstraciju potrebe za algoritamskim razmixǉaǌem u nastavi
matematike.

Ugra±ivaǌem u nastavni proces realnosti u kojoj uqenici ¼ive i dele²i
svoje vrednosne stavove sa uqenicima podstiqemo razvoj digitalnih kompetenci-
ja svojih uqenika, poma¼emo uqenicima da izgrade zdrav odnos prema tehnologiji
i osna¼ujemo uqenike da sami razviju specifiqne kompetencije u skladu sa zahte-
vima druxtva budu²nosti fokusiraǌem na kǉuqne vextine 21. veka – rexavaǌe
problema i algoritamsko mixǉeǌe.

Departman za matematiku i informatiku, Prirodno-matematiqki fakultet, Novi Sad
E-mail : dragan.masulovic@dmi.uns.ac.rs

