
NASTAVA MATEMATIKE

LXV, 1-2 (2020), 8–29

Dr Filip Mari�

KORELACIJA NASTAVE INFORMATIKE, MATEMATIKE
I FIZIKE KROZ PROGRAMSKI JEZIK PYTHON

1. Uvod

Poqevxi od xkolske 2018/2019. godine svi uqenici osnovnih xkola u Srbiji
u xestom razredu u sklopu obaveznog predmeta ,,Informatika i raqunarstvo“
izuqavaju osnovne koncepte programiraǌa korix²eǌem tekstualnog programskog
jezika. U najnovijim programima nastave i uqeǌa za gimnazije tako±e je primetna
ve²a zastupǉenost tema iz programiraǌa u odnosu na ranije dominantne teme iz
oblasti elementarne digitalne pismenosti (pre svega korix²eǌa aplikativnog
softvera).

Iako izbor programskog jezika nije fiksiran nastavnim programom, pre-
poruka je da se koristi neki od savremenih skriptnih jezika. Nastavnici i
autori u­benika se uglavnom opredeǉuju za programski jezik Python, pre svega
zbog ǌegove popularnosti, jednostavnosti i bogate kolekcije biblioteka pogod-
nih za izuqavaǌe poqetnih koraka programiraǌa. Xiru diskusiju o prednostima
korix²eǌa programskog jezika Python u modernizaciji uloge raqunarskog pro-
gramiraǌa u obrazovaǌu dao je N. Vasiǉevi² u qlanku [1]. Osnove korix²eǌa
jezika Python mogu se videti u qlancima M. Qabarkape [4,5].

Osim izbora jezika veoma je znaqajan i izbor aplikativnog programskog in-
terfejsa (engl. application programming interface, API). Uz neizbe¼no pisaǌe
konzolnih aplikacija sa najjednostavnijim, komandno-linijskim interfejsom,
preporuquje se korix²eǌe specijalizovanih API za uqeǌe programiraǌa (npr.
robot Karel ili korǌaqa grafika) i API zasnovanih na 2d grafici u koordi-
natama (npr. biblioteka Pygame).

Savremeno obrazovaǌe insistira na brisaǌima klasiqne podele izme±u
predmeta i integralnom pristupu rexavaǌu problema. Uvo±eǌe elemenata pro-
gramiraǌa u obavezan program nastave otvara prostor za nove naqine korelacije
nastave raqunarstva sa nastavom drugih predmeta. Informatika nudi alatke ko-
je su korisne u svim sferama ǉudskog delovaǌa. Programiraǌe, kao usko speci-
fiqna disciplina, mo¼e da se primeni i u druxtveno-humanistiqkim naukama

Proxireno plenarno izlagaǌe na Dr¼avnom seminaru o nastavi matematike i raqunarstva,
Beograd, 08.02.2020.

Korelacije nastave informatike, matematike i fizike 9

(pre svega kao mehanizam obrade podataka). Ipak, najjaqa i najprirodnija je
veza programiraǌa sa nastavom matematike i odre±enoj meri fizike i hemije.
Qesto se dexava da su zadaci koji se rexavaju u nastavi matematike i programi-
raǌa identiqni, ali se razlikuju tehnike rexavaǌa. Matematiqki zadaci su
veoma pogodni za uvo±eǌe koncepata programiraǌa, a programiraǌe mo¼e do-
prineti jednostavnijem rexavaǌu matematiqkih zadataka (qesto eksperimental-
nom metodom, koja je zapostavǉena u tradicionalnom matematiqkom obrazovaǌu)
i premextaǌu fokusa sa mehaniqkog izraqunavaǌa na modelovaǌe problema.

2. Korelacije u nastavi

U nastavku ²emo kroz niz prigodnih primera pokuxati da ilustrujemo odre-
±ene mogu²nosti za jaqe povezivaǌe nastave informatike, matematike i fizike.
Ve²ina primera dostupna je u priruqnicima za nastavu programiraǌa u osnovnoj
i sredǌoj xkoli [2,3], na portalu https://petlja.org.

2.1. Osnovna aritmetiqka izraqunavaǌa

Ve² prilikom pokretaǌa razvojnog okru¼eǌa za programski jezik Python
pokrenuta je komandna linija u koju je mogu²e unositi izraze qija se vrednost
odmah izraqunava. Podr¼ane su sve osnovne aritmetiqke operacije nad celim i
nad realnim brojevima (+, - za sabiraǌe i oduzimaǌe, * za mno¼eǌe, / za realno
deǉeǌe i // i % za celobrojni koliqnik i ostatak), uz uobiqajeni prioritet i
upotrebu zagrada.

>>> 3 + 5 >>> 123456 / 789
8 156.47148288973384

>>> 5 - 3 >>> 123456 // 789
2 156

>>> 123 * 456 >>> 123456 % 789
56088 372

Na taj naqin Python direktno zameǌuje tradicionalni kalkulator i ima ga
smisla koristiti gde god se u nastavi inaqe koristi kalkulator (pre svega u
nastavi fizike i hemije, ali i u matematici, kada se radi obrada podataka koja
i inaqe podrazumeva dopuxtenu upotrebu kalkulatora).

Naredni znaqajni korak je upotreba promenǉivih za smextaǌe ulaznih i
rezultuju²ih veliqina, kao i me±urezultata izraqunavaǌa. Na slici 1 (na
slede²oj strani) prikazano je rexeǌe narednog jednostavnog zadatka u jezici-
ma C++ i Python.

Zadatak 2.1.1. Pera ima 5 jabuka, a Mika ima dve jabuke vixe od ǌega.
Koliko jabuka imaju zajedno?

Prime²ujemo da je rexeǌe u jeziku Python jednostavnije od onoga u jeziku
C++. Program ne sadr¼i ,,suvixne delove’“, a promenǉive je mogu²e koristiti

10 F. Mari²

bez potrebe za prethodnom deklaracijom (tip se odre±uje na osnovu vrednosti
dodeǉenoj promenǉivoj). Mo¼emo slobodno konstatovati da se program u pro-
gramskom jeziku Python zapravo skoro ni po qemu ne razlikuje od precizno za-
pisanog matematiqkog rexeǌa ovog zadatka. Stoga se insistiraǌem da uqenici
zapixu rexeǌa zadataka ovog tipa u obliku programa zapravo uve¼bava precizan
zapis matematiqkih rexeǌa, sa qim, usled nedoslednosti nastavnika prilikom
oceǌivaǌa, neki uqenici imaju problema, qak iako umeju korektno da rexe za-
datak. Raqunar postaje taj koji kontrolixe i oceǌuje korektnost i preciznost
uqenikovog modela rexavaǌa zadatka.

C++

#include <iostream>
using namespace std;

Python
int main() {

int pera, mika; pera = 5
pera = 5; mika = pera + 2
mika = pera + 2; zajedno = pera + mika
zajedno = pera + mika; print(zajedno)
cout << zajedno << endl;
return 0;

}
Slika 1. Rexeǌe zadatka 2.1.1 u programskom jeziku C++ i programskom jeziku Python

Primetimo, daǉe, da je za rexavaǌe zadatka bilo dovoǉno precizno mo-
delovati problem, a da je izraqunavaǌe (u ovom primeru sabiraǌe brojeva 5
i 2, a zatim sabiraǌe broja 5 sa dobijenim zbirom 7) prepuxteno raqunaru.
Sasvim je jasno da mehaniqko izraqunavaǌe razvija odre±ene kognitivne vex-
tine uqenika i stoga je sa uqenicima mla±ih uzrasta neophodno insistirati na
vextini raqunaǌa bez korix²eǌa pomo²nih ure±aja (raqunaǉki, kalkulatora,
raqunara). Me±utim, u nekom trenutku se mo¼e oqekivati da su uqenici tu vex-
tinu savladali i svrsishodno je fokus rexavaǌa problema prebacivati na druge
aspekte (kao xto se, na primer, u rexavaǌu zadataka iz fizike izraqunavaǌe od
poqetka smatra neinteresantnom, trivijalnom vextinom i dopuxta se upotreba
kalkulatora).

Prika¼imo jox nekoliko primera tekstualnih zadataka direktno preuzetih
iz trenutno va¼e²ih zbirki zadataka iz matematike i fizike i ǌihovih rexeǌa
u programskom jeziku Python.

Zadatak 2.1.2. Kina je 2018. godine imala 1 427 647 786 stanovnika i
proceǌuje se da �e u naredne 3 godine rasti po stopi od 0,59% godixǌe.
Koliko �e stanovnika Kina imati 2021. godine?

Rexeǌe zahteva razumevaǌe procentnog raquna.

Korelacije nastave informatike, matematike i fizike 11

stopa rasta = 0.59
kina2018 = 1427647786
kina2019 = kina2018 * (1 + stopa rasta / 100)
kina2020 = kina2019 * (1 + stopa rasta / 100)
kina2021 = kina2020 * (1 + stopa rasta / 100)
print(kina2021)

Za razliku od prethodnog zadatka u kojem se izgubila odre±ena vrednost
time xto uqenici nisu morali da ruqno izvrxavaju aritmetiqke operacije, u
ovom zadatku je potpuno jasno da ruqno raqunaǌe predstavǉa ozbiǉnu prepreku
u rexavaǌu te da rexavaǌe zadatka uz pomo² raqunara ima mnogo vixe smisla
nego bez ǌega.

Rexavaǌe zadataka na ovaj naqin ima smisla i u nastavi fizike, gde je
upotreba kalkulatora dozvoǉena od samog poqetka. Ilustrujmo to jednim jed-
nostavnim zadatkom iz redovnog gradiva za 6. razred.

Zadatak 2.1.3. Vozilo je za 90 minuta prexlo 100 kilometara, a za-
tim je za narednih sat vremena prexlo jox 60 kilometara. Kolika je ǌe-
gova sredǌa brzina na tom putu?

t ukupno = 90 / 60 + 1 # h
s ukupno = 100 + 60 # km
v sr = s ukupno / t ukupno # km/h
print(v sr)

2.1.1. Rexavaǌe zadataka u opxtim brojevima

U prethodnim zadacima ulazni parametri su bili fiksirani u samom tek-
stu zadataka i izrazi u rexeǌima su sadr¼ali konkretne brojevne konstante.
Izra¼avaǌe rexeǌa u ,,opxtim brojevima“, tj. ,,izvo±eǌe formule“ omogu²ava
da se istovremeno rexi cela familija zadataka sa razliqitim ulaznim para-
metrima (u izrazima tada ne figurixu konkretne vrednosti, ve² promenǉive).
S obzirom na to da se u nastavi matematike praktiqno istovremeno izuqava i
modelovaǌe problema i tehnika konkretnog raqunaǌa, velika ve²ina zadataka je
formulisana nad konkretnim ulaznim podacima i ne insistira se dovoǉno na iz-
vo±eǌu formula nad ,,opxtim brojevima“, pre prelaska na krajǌe izraqunavaǌe
rexeǌa. Dobri nastavnici fizike su qesto mnogo dosledniji u ovome nego mate-
matiqari i insistiraju na tom da se konkretne ulazne veliqine ne smeju uvrstiti
dok se ne izvede konaqna formula. Ako u programima podaci nisu dati u startu,
nego se uqitavaju prilikom pokretaǌa programa, tada se rexavaǌe zadataka svo-
di na izvo±eǌe formula i ǌihovo kodiraǌe u programskom jeziku. To je texko,
jer je rexavaǌe zadataka u opxtim brojevima kognitivno zahtevnije nego rexa-
vaǌe zadataka sa konkretnim brojevima, ali je vredno truda. Ilustrujmo ovo
kroz nekoliko zadataka iz redovnog gradiva za ni¼e razrede OX.

12 F. Mari²

Zadatak 2.1.4. Jova sklapa igraqkice od lego-kockica. �eli da sklopi
jedan auto za koji su mu potrebna 4 toqka, 8 velikih i 4 male kocke i jedan
bicikl za koji su mu potrebna 2 toqka i 6 malih kocki. Ako je cena toqka 79
dinara, cena male kocke 59, a cena velike kocke 99 dinara, napixi program
koji izraqunava koliko je dinara potrebno Jovi da bi kupio sve potrebne
delove.

Poxto su svi ulazni parametri poznati, zadatak se mo¼e rexiti pisaǌem
jednog dugaqkog izraza.

>>> 4*79 + 8*99 + 4*59 + 2*79 + 6*59

S druge strane, realno je oqekivati da se cene mogu u nekom trenutku promeniti,
pa je vredno truda napisati program koji izra¼ava ukupnu cenu automobila i
bicikla u funkciji zadatih cena kockica i toqkova.

cena tocak = 79; cena velika = 99; cena mala = 59;
cena automobil = 4*cena tocak + 8*cena velika + 4*cena mala
cena bicikl = 2*cena tocak + 6*cena mala
cena ukupno = cena automobil + cena bicikl
print(cena ukupno)

Za razliku od prethodnog, ovo rexeǌe je mnogo razumǉivije, a omogu²ava da
se na veoma lak naqin dobije rezultat i nakon promene osnovnih cena. Na kraju,
umesto da se cene zadaju na poqetku programa pre ǌegovog pokretaǌa (xto je
qesta praksa prilikom pisaǌa skriptova u skriptnim jezicima kakav je Python),
te cene se mogu uqitati prilikom pokretaǌa programa.

cena tocak = int(input())
cena velika = int(input())
cena mala = int(input())

Zadaci u kojima se tra¼i izvo±eǌe i kodiraǌe formula sa opxtim brojevima
sastavni su deo takmiqeǌa iz programiraǌa za uqenike 5. i 6. razreda. Iskustvo
pokazuje da qak i najboǉi uqenici (oni koji uqestvuju na takmiqeǌima), qesto
imaju problem sa rexavaǌem ovakvih zadataka, kao i da je problem upravo u ne-
dostatku odgovaraju²ih matematiqkih vextina (jer uqenici nisu navikli da re-
xavaju zadatke u kojima ulazni podaci nisu konkretno zadati). Na primer, preko
30% petaka, uqesnika kvalifikacija za informatiqka takmiqeǌa 2019/2020. go-
dine nije rexilo naredni zadatak i to pre svega jer nisu umeli da korektno urade
matematiqki deo (zadatak je sa programerskog stanovixta potpuno trivijalan).

Zadatak 2.1.5. Andrija i Bojan su u kafi�u popili po jedan (isti) sok.
Andrija je dao a, a Bojan b dinara, a dobili su kusur od k dinara. Kako treba
da podele kusur da bi jednako platili?

Dva soka su koxtala a + b− k, a jedan sok s = (a + b− k)/2 dinara. Prema
tome, Andrija treba da dobije a− s a Bojan b− s dinara.

Korelacije nastave informatike, matematike i fizike 13

andrija dao = float(input())
bojan dao = float(input())
kusur = float(input())
sok = (andrija dao + bojan dao - kusur) / 2
andrija kusur = andrija dao - sok
bojan kusur = bojan dao - sok
print(andrija kusur, bojan kusur)

Insistiraǌe na rexavaǌu problema u opxtim brojevima mo¼e razotkriti
neke jednostavnije postupke od onih koje uqenici koriste. Ilustrujmo ovo jednim
primerom iz zbirke zadataka iz matematike za 6. razred.

Zadatak 2.1.6. a) Koordinata taqke M je 3, a koordinata taqke N
je 9. Odredi koordinatu taqke S koja je sredixte du�i MN .

b) Koordinata taqke M je −1, a koordinata taqke N je 5. Odredi
koordinatu taqke P koja je sredite du�i MN .

Ovi zadaci su jednostavni pa se rexeǌe oqekuje samo u obliku koordinate
sredixǌe taqke (ne oqekuje se postupak rexavaǌa). Uqenik do taqnog rexeǌa
prvog dela zadatka mo¼e do²i slede²im postupkom: ,,Od 3 do 9 imam 6. Pola od
toga je 3. Kada se od 3 pomerim udesno za 3, do±em u 6“. Program zasnovan na
ovom postupku bio bi formulisan na slede²i naqin:

M = 3; N = 9
S = M + (N - M) / 2
print(S)

Iako intuitivno veoma jasan i prirodan, ovaj postupak je komplikovaniji
od slede²eg, koji ²e upotrebiti znatno maǌi broj uqenika. Zaista, koliko god
koncept aritmetiqke sredine dva broja bio prirodan osobama sa matematiqkim
iskustvom, deci mo¼e biti neintuitivno da sabiraju dva broja da bi naxli
ǌihovo sredixte – to je nexto xto treba da nauqe.

M = 3; N = 9
S = (M + N) / 2
print(S)

Xto se tiqe drugog dela zadatka, situacija je jox komplikovanija. Uqenici
nenaviknuti na rad sa negativnim brojevima qesto do rexeǌa dolaze veoma kom-
plikovanim, zaobilaznim putem: ,,Od −1 do 0 imam 1, i od nule do 5 imam 5, pa
je to ukupno 6. Pola od toga je 3 i kada se od −1 pomerim za 3, do nule mi ode 1
i onda jox 2 i do±em u taqku 2“. Insistiraǌem na pisaǌu programa koji rexava
zadatak bez obzira na znak ulaznih veliqina uqenici se navode na to da usvoje
najjednostavnije postupke za rexavaǌe problema, a u ovom konkretnom primeru
da shvate da se pojmovi rastojaǌa taqaka i aritmetiqke sredine dva broja u
neizmeǌenom obliku prenose sa pozitivnih racionalnih na sve racionalne bro-
jeve.

14 F. Mari²

U fizici je sasvim uobiqajeno izra¼avaǌe formula u opxtim brojevima.
Ilustrujmo to jednim primerom zadatka sa opxtinskog takmiqeǌa za 6. razred.

Zadatak 2.1.7. Oblak i automobil su se kretali du� istog pravca,
jedan drugom u susret. Oblak je bio kru�nog oblika polupreqnika 5 km i
kretao se brzinom od 50 km/h. Automobil se kretao brzinom od 30 km/h.
Koliko kilometara je automobil vozio kroz oluju, ako je proxao kroz ǌen
centar?

v az = 30 # km/h # brzina automobila u odnosu na zemlju
v oz = 50 # km/h # brzina oblaka u odnosu na zemlju
r o = 5 # km # poluprecnik oblaka
s ao = 2 * r o # put koji automobil predje kroz oblak
v ao = v az + v oz # brzina automobila u odnosu na oblak
t ao = s ao / v ao # vreme koje automobil putuje kroz oblak
s az = t ao * v az # put koji automobil predje u odnosu na zemlju

dok se krece kroz oblak
print(s az)

Naglasimo da su svi prethodni zadaci bili takvi da se rezultati direktno
izraqunavaju na osnovu datih ulaznih veliqina (primenom nekih jednostavni-
jih ili komplikovanijih formula). S druge strane, u odre±enim zadacima se
rexeǌa dobijaju postavǉaǌem i rexavaǌem jednaqina ili sistema jednaqina.
Takvi zadaci se ne mogu direktno rexavati primenom klasiqnog programiraǌa
(jer klasiqni programski jezici, pa ni Python, nemaju mogu²nost direktno rex-
avaǌa jednaqina). U takvoj situaciji qesto je potrebno jednaqinu rexiti (na
simboliqkom nivou), da bi se onda krajǌe izraqunavaǌe prepustilo raqunaru.
Ilustrujmo ovo jednim primerom.

Zadatak 2.1.8. Ako je zbir neke tri stranice pravougaonika m, a zbir
neke druge tri stranice istog pravougaonika n, napisati program kojim se
odre�uje obim i povrxina tog pravougaonika.

Obele¼imo stranice pravougaonika sa a i b. Tada je obim pravougaonika
2 · a + 2 · b, a povrxina je a · b. Ako je prvi zbir tri stranice pravougaonika
2 · a + b onda je zbir druge tri stranice a + 2 · b. Tako dobijamo dve jednaqine
2 · a + b = n i a + 2 · b = m iz kojih mo¼emo odreditii a i b. Jedan naqin da
se do±e do rexeǌa je da se rexi sistem jednaqina nekom od klasiqnih metoda
rexavaǌa sistema jednaqina, qime se dobija da je a = 2n−m

3 i b = 2m−n
3 , na

osnovu qega se veoma jednostavno odre±uju obim i povrxina kao O = 2(a + b) i
P = ab.

n = float(input()) # zbir neke tri stranice pravougaonika 2a+b
m = float(input()) # zbir neke tri stranice pravougaonika 2b+a
a = (2 * n - m) / 3 # stranica a
b = (2 * m - n) / 3 # stranica b
O = 2 * (a + b) # obim pravougaonika 2(a+b)
P = a * b # povrsina pravougaonika ab

Korelacije nastave informatike, matematike i fizike 15

2.2. Uvo�eǌe pojma funkcije

Definisaǌe funkcija je jedan od osnovnih koraka razlagaǌa problema na
potprobleme i gra±eǌa apstrakcija u programiraǌu. Uqenicima pojam funkcije
nije dovoǉno blizak i imaju potexko²e sa ǌegovim usvajaǌem Funkcije u poqetku
mogu biti veoma jednostavne i izgra±ene na osnovu najpoznatijih matematiqkih
formula. Po¼eǉno je uvesti ih u primerima gde se isto izraqunavaǌe ponavǉa
na mnogo mesta u programu.

Zadatak 2.2.1. Izraqunati povrxinu slo�enih oblika sa slike 2.

Slika 2. Oblici qiju povrxinu treba izraqunati

povrsina pravougaonika
def P pravougaonika(a, b):

return a * b P1 = P pravougaonika(2, 3) +
P pravougaonika(3, 4) +

povrsina pravouglog trougla P pravouglog trougla(2, 1) +
def P pravouglog trougla(a, b): P polukruga(3))

return a * b / 2
P2 = P polukruga(7) -

povrsina kruga P polukruga(2) +
def P kruga(r): P polukruga(3) +

return r * r * math.pi P pravouglog trougla(2, 2)

povrsina polukruga print(P1, P2)
def P polukruga(R):

return P kruga(R / 2) / 2

U fizici se, recimo, mogu definisati funkcije za konverziju jedinica (xto
je qesta potreba u realnim zadacima). Na primer, naredna funkcija konvertuje
brzinu datu u kilometrima na sat u metre u sekundi.

def ms(kmh):
return kmh * 1000 / 3600

16 F. Mari²

2.3. Geometrija

Izuqavaǌe geometrije se veoma lepo mo¼e povezati s raqunarskom grafikom.

3.2.1. Korǌaqa grafika

Popularan aplikativni programski interfejs kroz koji se, jox od program-
skog jezika Logo iz 1960-ih, qesto uvode osnovni koncepti programiraǌa je kor-
ǌaqa grafika. Kursor (popularna ,,korǌaqa“) pomera se po ekranu i kreira
crte¼ ostavǉaju²i trag na ekranu tokom svog pomeraǌa. Programer upravǉa
kursorom pomo²u slede²ih naredbi:
• forward(x) – idi napred x koraka

• left(a) – okreni se ulevo a stepeni
• right(a) – okreni se udesno a stepeni

Na primer, kvadrat se mo¼e nacrtati tako xto se qetiri puta ponovi korak
napred za du¼inu stranice i okret za 90 stepeni. Kra²i programski k̂od se
dobija ako se za ponavǉaǌe naredbi upotrebi petǉa.

forward(100)
left(90)
forward(100)
left(90) for i in range(4):# ponovi 4 puta
forward(100) forward(100) # idi napred 100 koraka
left(90) left(90) # okret nalevo 90 stepeni
forward(100)
left(90)

Prirodno uopxteǌe prethodnog programa je da se nacrta pravilan mnogougao
sa n stranica.

Da bi se to desilo, korǌaqa u svakom koraku treba da se okrene za spoǉaxǌi
ugao tog mnogougla, pa je potrebno odrediti meru tog ugla u stepenima. Iako je
mogu²e pozvati se na teoremu koja se obiqno dokazuje u sklopu nastave matematike
koja tvrdi da je mera tog ugla 360◦

n (ova teorema se obiqno dokazuje izraquna-
vaǌem zbira unutraxǌih uglova razlagaǌem n-tougla na n− 2 trougla), mogu²e
je tu qiǌenicu jednostavno ilustrovati i na jeziku korǌaqe. Naime, korǌaqa
zapoqiǌe crtaǌe u nekom polo¼aju, tokom crtaǌa mnogougla okrene se taqno n
puta i na kraju zavrxi crte¼ u istom polo¼aju u kom je crtaǌe zapoqeto. Poxto

Korelacije nastave informatike, matematike i fizike 17

se okrenula taqno za pun krug tj. za 360◦ u n jednakih okreta, prilikom svakog
okreta korǌaqa se okrene za 360◦

n .

n = 6
for i in range(n):# ponovi n puta

forward(100)# idi napred 100 koraka
left(360/n) # okret nalevo za spoljasnji ugao n-tougla

Mnogi matematiqki zadaci u kojima se zahteva izraqunavaǌe uglova i du-
¼ina du¼i mogu se zadati kao problemi korǌaqa-grafike. Na taj naqin se po-
jaqava motivacija uqenika (uglove ne raqunamo samo zato xto se u zadatku tako
tra¼i, ve² xto su nam oni potrebni da bismo nacrtali neki interesantan crte¼).
Rexeǌa tih geometrijskih problema su direktno proveriva na raqunaru, xto
omogu²ava uqeǌe uz pomo² eksperimentisaǌa (u prethodnom programu uqenici
qesto pogode vrednosti za trougao, qetvorougao, petougao, xestougao, pa iz toga
uoqe pravilnost).

Zadatak 2.3.1. Napisati program koji iscrtava zvezdu sa 5 krakova.

Ako se zvezda crta sa samopresecaǌem (kako je prikazano na slici), onda se
crta 5 du¼i, i nakon svake korǌaqa se okre²e nadesno, za veliqinu suplementa
oxtrog ugla pri vrhu kraka zvezde.

Taj ugao se mo¼e izraqunati na slede²i naqin. U sredini zvezde nalazi
se pravilni petougao, qiji je svaki unutraxǌi ugao jednak 108 stepeni. To je
mogu²e zakǉuqiti tako xto se taj petougao podeli na 5 podudarnih jednakokrakih
trouglova, qiji uglovi pri vrhu ispuǌavaju ceo krug od 360◦, pa je svaki od tih
uglova jednak 360◦ : 5 = 72◦, dok su uglovi na osnovici tih trouglova jednaki
(180◦ − 72◦) : 2 = 54◦. Unutraxǌi ugao petougla obuhvata dva takva ugla, pa je
jednak 2 ·54◦ = 108◦. Kraci zvezde su jednakokraki trouglovi, qiji su spoǉaxǌi
uglovi na osnovici jednaki 108◦, pa su unutraxǌi uglovi na osnovici jednaki
180◦ − 108◦ = 72◦. Zato su unutraxǌi uglovi pri vrhu krakova zvezde jednaki
180 − 2 · 72◦ = 36◦. Dakle, prilikom crtaǌa zvezde pomo²u 5 du¼i koje se
me±usobno seku, korǌaqa nakon svake od 5 nacrtanih du¼i okre²e nadesno za
ugao od 180◦ − 36◦ = 144◦.

18 F. Mari²

Nakon ove matematiqke analize, sasvim je jednostavno napisati program.

for i in range(5):
forward(100)
right(144)

2.3.2. 2d grafika sa kooordinatama

Korǌaqa grafika je odliqna tehnika za ve¼baǌe uglova. Ipak, tradicional-
no se raqunarska grafika zasniva na konceptu koordinata. Veliki broj jezika
programerima na raspolagaǌe stavǉa neki mehanizam za iscrtavaǌe osnovnih ge-
ometrijskih oblika (taqaka, kvadrata, krugova, pravougaonika, elipsi, kru¼nih
lukova) zadavaǌem koordinata. Oblici su smexteni u Dekartov pravougli koor-
dinatni sistem, s tim xto se sve dexava u jednom kvadrantu kome je koordinatni
poqetak u gorǌem levom uglu ekrana, x-koordinata raste nadesno, a y-koordinata
raste nani¼e Treba biti obazriv, jer se u matematici razmatra drugaqije ori-
jentisana y-osa.

Za mnoge programske jezike postoje biblioteke koje daju podrxku za rad sa
2d grafikom. Jedna takva biblioteka u programskom jeziku Python je bibliote-
ka Pygame1 koja slu¼i za programiraǌe jednostavnih 2d igara. Ilustrujmo
upotrebu ove biblioteke kroz nekoliko jednostavnih primera.

Zadatak 2.3.2. U centru prozora dimenzije 200 puta 200 piksela, nacr-
taj znak plus qije su du�ine stranica 100 piksela. Debǉina linije je 10
piksela, a boje podesi kao na slici2.

Poxto se du¼i crtaju zadavaǌem koordinata krajǌih taqaka, centralno
mesto rexeǌa je odre±ivaǌe tih koordinata. Centar ekrana ima koordinate
(100, 100), pa krajǌe taqke vertikalne du¼i imaju koordinate (100, 50) i
(100, 150), a dok krajǌe taqke horizontalne du¼i imaju koordinate (50, 100) i
(150, 100) (od centralne taqke pomeramo se za 50 piksela, xto je pola du¼ine
du¼i, po odgovaraju²oj koordinati u odgovaraju²em smeru).

bojimo pozadinu u zuto
prozor.fill(pg.Color("yellow"))
vertikalna plava linija duzine 100 piksela

1https://pygame.org
2Verzija ovog qlanka s ilustracijama u boji mo¼e se na²i na sajtu qasopisa Nastava matematike

https://dms/rs/casopis-nastava-matematike/

Korelacije nastave informatike, matematike i fizike 19

pg.draw.line(prozor, pg.Color("blue"), (100, 50), (100, 150), 10)
horizontalna crvena linija duzine 100 piksela
pg.draw.line(prozor, pg.Color("red"), (50, 100), (150, 100), 10)

Zadatak 2.3.3. Napixi program koji crta nebo, sunce i oblak, kao na
slici.

Sunce i oblaci se dobijaju crtaǌem krugova. Krugovi se crtaju zadavaǌem
koordinata centra i polupreqnika.

bojimo pozadinu u plavo
prozor.fill(pg.Color("skyblue"))
crtamo sunce
pg.draw.circle(prozor, pg.Color("yellow"), (100, 100), 80)
crtamo oblak od tri kruga
pg.draw.circle(prozor, pg.Color("white"), (200, 200), 80)
pg.draw.circle(prozor, pg.Color("white"), (120, 200), 50)
pg.draw.circle(prozor, pg.Color("white"), (280, 200), 50)

Relativno zadavaǌe koordinata i dimenzija. Ve²a fleksibilnost pro-
grama se posti¼e kada se koordinate odre±uju u odnosu na neke kǉuqne taqke,
umesto da se navedu u apsolutnom obliku. Na primer, kada se plus nacrta na
slede²i naqin, ǌegov polo¼aj se ne meǌa ako se promeni dimenzija prozora, dok
se ǌegova veliqina jednostavno meǌa izmenom samo jednog broja u programu. Pos-
tupak izraqunavaǌa krajǌih taqaka du¼i isti je kao i ranije, jedino xto su sada
sve formule izra¼ene u opxtim brojevima.

(cx, cy) = (sirina / 2, visina / 2) # koordinate centra ekrana
duzina = 100 # duzina linije je 100 piksela
debljina = 10 # debljina linija je 10 piksela
vertikalna plava linija
pg.draw.line(prozor, pg.Color("blue"),

(cx, cy - duzina/2), (cx, cy + duzina/2), debljina)
horizontalna crvena linija
pg.draw.line(prozor, pg.Color("red"),

(cx - duzina/2, cy), (cx + duzina/2, cy), debljina)

Polo¼aj objekta odre±en je polo¼ajem jedne ǌegove kǉuqne taqke (ona se
ponekad naziva sidro). Veliqina objekta je zadata pomo²u jednog brojevnog
parametra (faktora skaliraǌa u odnosu na neku osnovnu veliqinu). Na primer,

20 F. Mari²

kod oblaka sidro mo¼e biti u centru velikog kruga, a veliqina mo¼e biti
odre±ena polupreqnikom tog kruga. Definisaǌem procedura koje kao parame-
tre imaju polo¼aj, veliqinu i boju oblika, mo¼emo jednostavno nacrtati vixe
sliqnih oblika.

procedura koja crta oblak na datoj poziciji, date velicine
u datoj nijansi sive boje
def oblak(x, y, r, siva):

boja = [siva, siva, siva] # nijansa sive boje
centralni veliki krug
pg.draw.circle(prozor, boja, (x, y), r)
r malo = round(5 * r / 8) # poluprecnik manjih krugova
levi manji krug
pg.draw.circle(prozor, boja, (x-r, y), r malo)
desni manji krug
pg.draw.circle(prozor, boja, (x+r, z), r malo)

crtamo nekoliko oblika razlicite velicine i nijanse sive boje
oblak(240, 200, 40, 180)
oblak(270, 250, 50, 210)
oblak(230, 100, 50, 230)

Simetrije. Qesto su objekti simetriqno raspore±eni u odnosu na neku pravu
liniju. Ako je prava postavǉena horizontalno ili vertikalno, simetriqno pres-
likavaǌe se vrxi priliqno jednostavno. Na primer, taqka koja je simetriqna
taqki (x, y) u odnosu na vertikalnu pravu x = x0 je (x0 + (x0 − x), y) ako je
x0 > x, tj. (x0− (x−x0), y) ako je x0 < x (ponovo, deci je mnogo jednostavnije da
simetriqno preslikaju taqku sa konkretnim koordinatama, nego da izka¼u opxtu
formulu).

Na primer, prilikom crtaǌa maqke prikazane na narednoj slici, aplikacija
dopuxta da se oqitaju x koordinate samo u levom delu prozora, dok se koordinate
taqaka u desnom delu moraju izraqunati primenom simetrije u odnosu na sredinu
ekrana x0 = 50.

Korelacije nastave informatike, matematike i fizike 21

2.3.3. Izraqunavaǌe koordinata primenom Pitagorine teoreme

Da bi se izraqunale koordinate, ponekad je potrebno primeǌivati formule
koje se izuqavaju u starijiim razredima OX.

Zadatak 2.3.4. Napixi program koji iscrtava saobra�ajni znak prika-
zan na slici. Xta taj znak poruquje uqesnicima u saobra�aju?

Za crtaǌe jednakostraniqnog trougla potrebno je primeniti izraqunavaǌe
visine Pitagorinom teoremom i teoremu o polo¼aju te¼ixta.

def jedakostranicni trougao(tx, ty, h, boja):
a = h * 2 / math.sqrt(3) # duzina stranice
koordinate temena - teziste deli visinu u odnosu 1 : 2
A = (tx - a/2, ty - h/3)
B = (tx + a/2, ty - h/3)
C = (tx, ty + 2*h/3)
pg.draw.polygon(prozor, boja, [A, B, C])

Zadatak 2.3.5. Va�an zadatak u igrici u kojoj loptica prolazi kroz
prepreke je ispitivaǌe da li se krug i pravougaonik seku. Definisati
funkciju koja to ispituje.

22 F. Mari²

Iako je ovaj zadatak mogu²e rexiti primenom Pitagorine teoreme i ele-
mentarnih svojstava koordinata, on je uqenicima priliqno te¼ak, jer rexeǌe
zahteva modelovaǌe problema na kakvo nisu navikli u redovnoj nastavi matema-
tike.

S obzirom na dimenzije, krug seqe pravougaonik ako i samo ako seqe neku od
ǌegovih ivica. Stoga je potrebno definisati funkcije koje odre±uju da li krug
seqe vertikalnu, odnosno da li krug seqe horizontalnu du¼.

Kada krug sa centrom O(cx, cy) polupreqnika r seqe horizontalnu du¼ AB,
ako je A(xa, y) i B(xb, y)? Presek mo¼e da postoji samo ako je vertikalno ras-
tojaǌe izme±u centra kruga i horizontalne prave na kojoj se nalazi du¼ maǌe
ili jednako r tj. presek mo¼e da postoji samo ako va¼i |cy − y| 6 r, odnosno
y− r 6 cy 6 y + r. Ako je ovaj uslov ispuǌen, presek mo¼e, a ne mora da postoji
– to zavisi od x-koordinate centra cx. Graniqni polo¼aji centra se odre±uju
na osnovu krugova koji dodiruju du¼. Na osnovu Pitagorine teoreme mo¼emo
izraqunati da je to interval [xa − d, xb + d], gde je d =

√
r2 − (cy − y)2.

def krugSeceHorizontalnuDuz(cx, cy, r, xa, xb, y):
if abs(cy - y) > r:

return False
d = math.sqrt(r**2 - (cy - y)**2)
return xa - d <= cx and cx <= xb + d

Presek sa vertikalnim du¼ima se mo¼e ispitati analogno. Ipak, elegant-
nije rexeǌe je primena osne simetrije oko prave y = x. Tom transformacijom
se: proizvoǉna taqka (x, y) preslikava u taqku (y, x) krug sa centrom u taqki
(cx, cy) polupreqnika r preslikava u krug sa centrom u taqki (cy, cx) polupre-

Korelacije nastave informatike, matematike i fizike 23

qnika r vertikalna du¼ sa temenima (x, ya) i (x, yb) preslikava u horizontalnu
du¼ sa temenima (ya, x) i (yb, x).

def krugSeceVertikalnuDuz(cx, cy, r, x, ya, yb):
return krugSeceHorizontalnuDuz(cy, cx, r, ya, yb, x)

2.3.4. Konstruisaǌe linearnih funkcija

Konstruisaǌe linearnih funkcija se veoma qesto potrebno u rexavaǌu za-
dataka iz razliqitih oblasti. Ilustrujmo nekoliko primena ove va¼ne tehnike
u nastavi programiraǌa raqunarske grafike.

Zadatak 2.3.6. Napisati program koji prikazuje tzv. gradijent, tj.
prelaz izme�u dve nasumiqno odre�ene boje.

Pretpostavimo da treba da odredimo n nijansi kojima ²emo popuniti pra-
vougaonike (pri qemu je poqetna nijansa jednaka prvoj, a zavrxna nijansa jednaka
drugoj nasumiqno odre±enoj boji). Svaka se boja predstavǉa kombinovaǌem cr-
vene, zelene i plave komponente (koristi se tzv. RGB model boja) i sva obrada
se vrxi posebno za crvenu, posebno za zelenu i posebno za plavu komponentu bo-
je. Pretpostavimo da poqetna boja u sebi sadr¼i Rp, a da krajǌa sadr¼i Rk

jedinica crvene boje. Potrebno je konstruisati linearnu funkciju koja slika
redni broj nijanse i u koliqinu crvene boje u toj nijansi, tako da je za i = 0
vrednost te funkcije jednaka Rp, a za i = n − 1 vrednost te funkcije jednaka
Rk. Elementarnom matematikom (na primer, rexavaǌem sistema jednaqina po
nepoznatim koeficijentima linearne funkcije) dobijamo da je tra¼ena funkcija
R(i) = Rp + i(Rk − Rp)/(n − 1). Na isti naqin odre±ujemo i koliqinu zelene,
odnosno plave boje u svakoj nijansi i.

n = 10 # broj nijansi
sirina polja = sirina / n
visina polja = visina
(rp, bp, gp) = nasumicna boja() # nasumicno odredjena pocetna boja
(rk, bk, gk) = nasumicna boja() # nasumicno odredjena krajnja boja
for i in range(0, n):

r = round(rp + i*(rk - rp)/(n - 1))
b = round(bp + i*(bk - bp)/(n - 1))
g = round(gp + i*(gk - gp)/(n - 1))
pg.draw.rect(prozor, (r, g, b),

(i*sirina polja, 0, sirina polja, visina polja))

24 F. Mari²

Zadatak 2.3.7. Napixi program koji raspore�uje jelke kao na slici.

Pretpostavimo da na raspolagaǌu imamo proceduru jelka koja crta jelku
na osnovu zadatih koordinata centralne taqke dna stabla, visine i nijanse boje.
Pretpostavimo da promenǉive sirina i visina sadr¼e xirinu i visinu ekrana,
dok promenǉiva horizont y sadr¼i y-koordinatu linije horizonta. Gorǌe sta-
blo levog drvoreda poqiǌe na 40% xirine ekrana i 10% visine ekrana ispod
horizonta i visine je 150 piksela. Svako naredno stablo je od prethodnog levo
za 7,5% xirine ekrana i ispod za 5% visine ekrana, pri qemu je vixe za 20 pik-
sela. Na osnovu ovih parametara mo¼emo konstruisati linearne funkcije koje
za stablo sa rednim brojem i odre±uje x-koordinatu, y-koordinatu i dimenzi-
ju (to xto su stabla raspore±ena du¼ jedne prave linije ukazuje na to da je i
funkcija koja opisuje zavisnost y u odnosu na x linearna, me±utim, na ovom mes-
tu se ne konstruixe ta funkcija, ve² linearne funkcije koje opisuju zavisnost
koordinata od vrednosti parametra koji je u ovom sluqaju redni broj stabla).

crtatmo levi drvored - linearne funkcije
for i in range(broj stabala):

x = 0.4 * sirina - i * 0.075 * sirina
y = (horizont y + 0.1 * visina) + i * 0.05 * visina
dim = 150 + i * 20
jelka(x, y, dim, random.uniform(0.2, 2.0))

Desni drvored se mo¼e nacrtati po istom principu (primenom simetrije u
odnosu na sredinu ekrana). Ipak prika¼imo rexeǌe koje je malo vixe u duhu
imperativnog programiraǌa u kome se u svakom koraku izvrxavaǌa petǉe meǌaju
vrednosti promenǉivih (xto nije svojstveno matematici).

crtamo desni drvored - azuriranje promenljivih
x = sirina / 2 + 0.1 * sirina
y = horizont y + 0.1 * visina
dim = 150
for i in range(broj stabala):

jelka(x, y, dim, random.uniform(0.2, 2.0))
x += 0.075 * sirina
y += 0.05 * visina

Korelacije nastave informatike, matematike i fizike 25

dim += 20

Interesantno je prodiskutovati da je osobina koja suxtinski karakterixe
linearne funkcije ta da za konstantni porast parametra funkcije tj. promenǉive
x, konstantno raste i vrednost funkcije tj. promenǉiva y.

2.4. Animacije i simulacije

Osim statiqkih slika, programski je relativno jednostavno realizovati i
animacije koje se dobijaju iscrtavaǌem slika u pravilnim vremenskim interva-
lima. Biblioteka PyGame qiju smo upotrebu za 2d grafiku prikazali u prethod-
nom poglavǉu mo¼e se koristiti i za kreiraǌe animacija. Animacije se mogu
odliqno iskoristiti za pravǉeǌe fiziqkih simulacija (pogotovo iz oblasti
kretaǌa). Prika¼imo jedan primer, inspirisan zadatkom koji je uqenicima bio
postavǉen na opxtinskom takmiqeǌu.

Zadatak 2.4.1. Gepard je neopa�eno prixao impali do rastojaǌa od
200m, i brzinom od 120 km/h pojurio ka ǌoj. Istog trenutka, impala je
poqela da be�i brzinom od 90 km/h. Nakon 12 s od poqetka trqaǌa, impala
je naixla na predeo obrastao �buǌem. Impale su odliqni skakaqi, xto
im omogu�ava da nastave trqaǌe istom brzinom. Kada je gepard naixao na
isti ovaj predeo obrastao �buǌem, morao je da smaǌi brzinu na 100 km/h, i
tom brzinom je nastavio poteru. Gepard je odliqan i veoma brz trkaq, ali
na kratkim relacijama, i nije u mogu�nosti da juri plen du�e od 1 km. Da
li je gepard uspeo da stigne impalu?

Izrada svake animacije ima nekoliko delova.

• Potrebno je definisati promenǉive koje opisuju staǌe objekata na ekranu
(,,sceni“), koje se meǌaju tokom trajaǌa animacije.

• Potrebno je definisati funkciju koja crta scenu na osnovu trenutnih vred-
nosti promenǉivih (ova funkcija se poziva u pravilnim vremenskim inter-
valima).

• Potrebno je definisati funkciju koja opisuje kako se u zadatom vremenskom
trenutku izraqunavaju vrednosti promenǉivih. To mo¼e biti bilo na os-
novu vremena t proteklog od poqetka animacije, bilo a¼uriraǌem vrednosti
promenǉivih na osnovu vremena ∆t proteklog od prethodnog iscrtavaǌa.

U naxem primeru, dve osnovne promenǉive su x-koordinata geparda xg i
x-koordinata impale xi. Iako se oba objekta u zadatku posmatraju kao materi-
jalne taqke, u animaciji moramo koristiti slike koje imaju svoje xirine, pa
²emo pretpostaviti da te koordinate predstavǉaju koordinate sredina slika.
Pretpostavi²emo da je koordinatni sistem postavǉen tako da se gepard na po-
qetku kretaǌa nalazi u koordinatnom poqetku (tj. da je xg = 0, a da se impala

26 F. Mari²

nalazi na polo¼aju xi = 200 (jer je na osnovu teksta zadatka na poqetku ona
udaǉena 200 metara od geparda). Ove promenǉive inicijalizujemo na poqetku
programa, zajedno sa odre±enim brojem konstanti koje predstavǉaju parametre
zadate tekstom zadatka. ´buǌe se ne pomera tokom animacije, pa je ǌegov po-
lo¼aj konstantan. Me±utim, on nam nije zadat u tekstu zadatka pa ga moramo
izraqunati na osnovu informacije da impala za 12 sekundi dolazi do ¼buǌa
(prilikom izraqunavaǌa moramo voditi raquna o konverziji jedinica).

ulazni parametri
v gs = 120 # km/h brzina geparda po savani
v is = 90 # km/h brzina impale po savani
v gz = 100 # km/h brzina geparda po zbunju
v iz = v is # km/h brzina impale po zbunju

x g = 0 # m pocetna pozicija geparda
x i = 200 # m pocetna pozicija impale
max x g = 1000 # m razdaljina koju geprad moze da pretrci
t iz = 12 # s vreme potrebno da impala dotrci do zbunja
izracunavamo pocetni polozaj zbunja
s1 i = t iz * ms(v is) # m put koji impala pretrci do zbunja
x z = x i + s1 i # m pocetni polozaj zbunja

Jako je dobro da se sve promenǉive quvaju u svojim prirodnim jedinicama
(na primer, polo¼aj treba da bude zadat u metrima, a ne u pikselima, a vreme u
sekundama, a ne u frejmovima), a da se konverzija izvrxi prilikom iscrtavaǌa.
To preraqunavaǌe se po pravilu vrxi jednostavnim linearnim funkcijama i u
programu je potrebno quvati koeficijente tih funkcija. U naxem primeru ²emo
pretpostaviti da se jedan metar predstavǉa pomo²u jednog piksela, pa ne²emo
pamtiti faktor za preraqunavaǌe metara u piksele. S druge strane, animaciju
²emo podesiti tako da se u jednoj sekundi promeni 30 slika i tu konstantu ²emo
pamtiti u posebnoj promenǉivoj.

fr s = 30 # 1/s # broj frejmova u jednoj sekundi animacije

Sada mo¼emo definisati funkciju koja iscrtava objekte na sceni. Da bi
se sliqica iscrtala potrebno je navesti ǌen gorǌi levi ugao. Poxto znamo
x-koordinatu ǌene sredine, da bismo odredili x-koordinatu ǌene leve ivice,
potrebno je od x-koordinate sredine oduzeti pola xirine slike. Poxto ¼elimo
da se svi objekti nalaze na dnu ekrana, y-koordinatu gorǌe ivice svakog objekta
odredi²emo tako xto od visine ekrana oduzmemo visinu objekta.

slicice koje cemo koristiti
gepard = pg.image.load("gepard.png") # slicica geparda
impala = pg.image.load("impala.png") # slicica impale
def crtaj():

brisemo prethodnu scenu
prozor.fill(pg.Color("white"))
crtamo zbunje

Korelacije nastave informatike, matematike i fizike 27

pg.draw.rect(prozor, pg.Color("green"),
(x z, visina - 10, sirina - x z, 10))

crtamo geparda i impalu
prozor.blit(gepard, (x g - gepard.get width() / 2,

visina - gepard.get height()))
prozor.blit(impala, (x i - impala.get width() / 2,

visina - impala.get height()))

Na kraju, definiximo funkciju koja pomera geparda i impalu. Pomeraǌe
²emo vrxiti tako xto ²emo x-koordinatu uve²avati za proizvod brzine (koju
odre±ujemo u zavisnosti od podloge tj. u zavisnosti od toga da li se ¼ivotiǌa
kre²e po savani ili po ¼buǌu) i proteklog vremena ∆t, koje lako izraqunavamo
tako xto znamo broj sliqica koje se prikazuju u jednoj sekundi.

def pomeri():
global x i, x g # globalne promenljive koje se menjaju
if x g >= x i: # ako je gepard stigao impalu

return # zaustavljamo animaciju
dt = 1 / fr s # s # vreme proteklo izmedju dva frejma
pomeramo geparda
if x g < max x g: # ako se gepard jos nije umorio

brzina geparda u zavisnosti od podloge
v g = v gs if x g < x z else v gz
izracunavamo mu novi polozaj
x g = x g + ms(v g) * dt

pomeramo impalu
brzina impale u zavisnosti od podloge
v i = v is if x i < x z else v iz
izracunavamo joj novi polozaj
x i = x i + ms(v i) * dt

3. Zakǉuqci

U qlanku je pokazan niz primera zadataka iz matematike i fizike za os-
novnu xkolu, koji su rexavani u korix²eǌe raqunara, pisaǌem programskog
koda u jeziku Python. U sliqnom duhu mogu²e je formulisati i komplikovani-
je primere, primerene nastavi u sredǌim xkolama (oni bi obuhvatali primenu
trigonometrije ili slo¼enijih zakona fizike). Osim korix²eǌa raqunara za
raqunaǌe i izradu animacija i simulacija, jox jedno interesantno poǉe za
povezivaǌe matematike i programiraǌa je primena matematiqke logike i tehnika
dokazivaǌa teorema na rezonovaǌe o korektnosti algoritama.

Potrebno znaǌe programiraǌa za rexavaǌe zadataka prikazanih u ovom
qlanku je veoma elementarno i uqenik za ǌihovo rexavaǌe ne mora da poznaje puno
komplikovanih detaǉa programskog jezika, niti da vlada naprednim raqunarskim
algoritmima (dovoǉno je poznavaǌe upotrebe promenǉivih, izraza, jednostavnog
granaǌa, petǉi i definisaǌa i pozivaǌa funkcija, a u oblasti geometrije i

28 F. Mari²

animacije poznavaǌe osnovnog programskog interfejsa odabrane biblioteke za
2d grafiku). Sve ove teme su obuhva²ene redovnom nastavom programiraǌa u
6. i 7. razredu osnovne xkole.

Centralni fokus svih prikazanih zadataka je, dakle, na matematiqkom mo-
delovaǌu problema. Koliko god da su matematiqki koncepti koji se koriste
u prikazanim zadacima elementarni i uveliko obuhva²eni redovnim programom
nastave matematike, iskustvo pokazuje da uqenici (pa i nastavnici) veoma texko
izlaze na kraj sa ǌima. Te¼inu predstavǉa to xto su svi zadaci konstruk-
tivistiqe prirode: od uqenika se tra¼i da izvede formulu ili da definixe
funkciju koja zadovoǉava tra¼ena svojstva. Od uqenika se tra¼i da primeni
nauqeno na rexavaǌe problema sa kakvim se nije ranije sreo, xto je samo po
sebi problematiqno. To je dodatno pojaqano qiǌenicom da nastava matematike
pod pritiskom oceǌivaǌa koristi intenzivno ,,ventil xablonskih zadataka“, ko-
ji omogu²ava da uqenici steknu dobre ocene primenom uglavnom reproduktivnih
znaǌa, bez primene koncepata koji se obra±uju i bez ǌihovog kreativnog kombi-
novaǌa. Umesto insistiraǌa na matematiqkom modelovaǌu i izvo±eǌu formula,
nastava qesto ostaje zarobǉena u mehaniqkoj primeni unapred datih obraza-
ca i u rutini numeriqkog i simboliqkog izraqunavaǌa (iako su u posledǌe
vreme primetne odre±ene promene u pozitivnom smeru). Iskustvo autora na
poǉu nastave informatike pokazuje da, kada steqena matematiqka znaǌa treba
da primene na kreativan naqin u rexavaǌu informatiqkih zadataka, uqenici
iskazuju pove²ano interesovaǌe, ali uspeh qesto izostaje, jer nisu naviknuti na
takav pristup.

Pojava programiraǌa kao obaveznog predmeta u osnovnim xkolama i prome-
na pristupa nastavi programiraǌa u gimnazijama su nova realnost koja otvara
znaqajan potencijal za osavremeǌavaǌe nastave matematike i fizike, ali i jas-
nije pozicioniraǌe uloge programiraǌa u obrazovaǌu. Mixǉeǌe autora je da
je potrebno izvrxiti mnogo qvrx²u integraciju nastavnih programa ovih pred-
meta, na svim nivoima, kao i reorganizaciju redosleda nekih nastavnih tema,
u skladu sa potrebama onih drugih (,,matematika je kraǉica, ali i sluxkiǌa
nauka“). Na primer, elementarna analitiqka geometrija koja obuhvata rad sa
koordinatama i vektorima otvara prostor za kreiraǌe animacija i simulacija
koje mogu biti korisne u nastavi mnogih prirodnih nauka i ima smisla raz-
motriti ranije i ojaqano izuqavaǌe ovih nastavnih tema. Jaqu integraciju ovih
predmeta mogu²e je posti²i formiraǌem jedinstvene radne grupe za izradu nas-
tavnih planova ovih predmeta (xto je po mixǉeǌu autora mnogo boǉe u odnosu
na tradicionalni pristup u kome se za svaki predmet formiraju zasebne radne
grupe i dovodi do neusaglaxenih programa nastave).

Teme prikazane u ovom izlagaǌu su qesto nepopularne i zajednice nastavni-
ka ne pokazuju veliko interesovaǌe za ǌih: informatiqari ih do¼ivǉavaju
kao previxe matematiqke i stoga ih izbegavaju (sa obrazlo¼eǌem da je to de-
ci pretexko i da deca ne vole matematiku, pa ²e se ta ,,ne ǉubav’’ preneti i
na informatiku), dok ih matematiqari i fiziqari do¼ivǉavaju kao previxe
programerske i obiqno ni ne razmatraju mogu²nost bilo kakvog korix²eǌa pro-

Korelacije nastave informatike, matematike i fizike 29

gramiraǌa u nastavi. Mixǉeǌe autora je da promena mora do²i odozgo – infor-
matiqko i matematiqko obrazovaǌe nastavnika mora jaqe da se integrixe unutar
fakulteta i osavremeni, da bi se u budu²nosti promene prenele nani¼e.

LITERATURA
[1] N. Vasiǉevi², Modernizacija uloge raqunarskog programira�a u obrazova�u, Nastava

matematike, LX, 3–4 (2015), 19–31.

[2] F. Mari² i drugi, Programira�e u Pajtonu, priruqnik za xesti razred, Fondacija
,,Petǉa“, 2018.

[3] F. Mari², M. Vugdelija i drugi, Programira�e grafike pomo�u Pygame, priruqnik za
sedmi razred. Fondacija ,,Petǉa“, 2019.

[4] M. Qabarkapa, Uvod u programira�e korix�e�em Python-a, Nastava matematike LXIV,
1–2 (2019), 31–40.

[5] M. Qabarkapa, Python – osnovni tipovi podataka, Nastava matematike LXIV, 3–4 (2019),
101–111.

Matematiqki fakultet, Beograd

E-mail : filip@matf.bg.ac.rs

