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DVE ZANIMǈIVE NEJEDNAKOSTI ZA UGLOVE TROUGLA

U ovom radu ²emo dati dokaze dveju zanimǉivih nejednakosti trougla koje
glase:
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gde su R i r polupreqnici opisane i upisane kru¼nice trougla ABC, a sumiraǌe
se vrxi po svim unutraxǌim uglovima trougla.

Najpre ²emo dokazati slede²e dve jednakosti:
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gde je s poluobim trougla ABC.

Dokaz jednakosti (3). Koristi²emo poznate jednakosti:
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gde se u drugom zbiru sumiraǌe vrxi po svim parovima uglova trougla.
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i jednakosti (5), dobijamo:
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dakle jednakost (3).

Dokaz jednakosti (4) se izvodi sliqno korix²eǌem jednakosti
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Inaqe, dokazi identiteta (5) i (6) mogu se na²i u [3, str. 57].

Dokaz nejednakosti (1). Zbog jednakosti (3), nejednakost (1) je ekvivalent-
na svakoj od slede²ih nejednakosti:
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4R2 − 4Rr − 2r2 6 8R2 + r2 − s2 6 8R2 − 16Rr + 6r2,

16Rr − 5r2 6 s2 6 4R2 + 4Rr + 3r2,(7)

a ovo posledǌe je nejednakost 5.9 iz [2, str. 51]. Dakle, nejednakost (1) je taqna.
Jednakost u ǌoj va¼i ako i samo ako je R = 2r, xto je ispuǌeno ako i samo ako
je α = β = γ, tj. ako je u pitaǌu jednakostraniqni trougao.

Nejednakost (2) se dokazuje sliqno, korix²eǌem nejednakosti (4). I ovde
jednakost va¼i ako i samo ako je u pitaǌu jednakostraniqni trougao.

Potpunosti radi, navodimo i dokaz nejednakosti (7).
Koristi²emo poznate obrasce
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gde su H, G i I, redom, ortocentar, te¼ixte i centar upisane kru¼nice trougla
ABC. Iz poznatih jednakosti

sin2 α + sin2 β + sin2 γ = 2(1 + cosα cos β cos γ),

a2 + b2 + c2 = 2s2 − 2r2 − 8Rr

i sinusne teoreme dobijamo da va¼i
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Sada iz (8) sledi
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pa zbog |IH|2 > 0 va¼i

3r2 + 4Rr + 4R2 =
1
4
· 4s2 > 0, odakle je s2 6 4R2 + 4Rr + 3r2,

xto je desna nejednakost u (7).
Za dokaz leve nejednakosti (7), najpre koriste²i jednakosti

a2 + b2 + c2 = 2s2 − 2r2 − 8Rr i ab + bc + ca = s2 + r2 + 4Rr,

izvodimo jednakost (
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Kako je |IG|2 > 0, slede, redom, nejednakosti:
(∑

a
)2

> 64Rr − 20r2 i 4s2 > 64Rr − 20r2,

xto, posle skra²ivaǌa daje levu stranu nejednakosti (7).

Napomena. Dokazi jednakosti (8) i (9) se mogu na²i u [1, str. 432–443].
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