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1. Uvod

Tema ,,Realni brojevi“ pojavǉuje se u xkolskim nastavnim programima kod
nas tri puta: u sedmom razredu osnovne xkole, a zatim u prvom i tre²em razredu
(ve²ine) sredǌih xkola. Nastavu u tim razredima, po pravilu, izvode profe-
sionalni matematiqari, pa se ǌihova struqna osposobǉenost ne dovodi u pitaǌe.
Verujemo da ²e se ve²ina tih nastavnika slo¼iti da se radi o temi koju je naj-
te¼e realizovati u qitavom dvanaestogodixǌem periodu izuqavaǌa matematike
u xkoli. Razlog je svakako u tome xto je u stvari nemogu²e, u bilo kom od
pomenutih razreda, o uvo±eǌu realnih brojeva govoriti potpuno precizno (qak
se i na prvoj godini fakulteta neki delovi strogog zasnivaǌa preskaqu). Za-
to je svaka realizacija ove teme neizbe¼no kompromis izme±u eventualne ¼eǉe
za strogox²u izlagaǌa i mogu²nosti uqenika da prihvate to izlagaǌe ili qak
razumeju potrebu za tako neqim.

U raznim u­benicima koji se ovom temom bave kod nas i u drugim obrazovnim
sistemima pojavǉuju se razliqiti pokuxaji prevazila¼eǌa pomenutih proble-
ma. Nemamo nameru da arbitriramo izme±u tih varijanti (mada ²emo tokom
izlagaǌa pomenuti neke grexke koje se pri tome dosta qesto prave). ´eǉa nam je
da umesto toga ponudimo jedan mogu²i naqin obrade ovih sadr¼aja koji bi bio,
s jedne strane, onoliko strog koliko proceǌujemo da uqenici u odgovaraju²em
razredu to mogu da prihvate, a mo¼e se realizovati u predvi±enom vremenu, ali
istovremeno ne bi ,,gurao pod tepih“ stvarne probleme koji postoje u zasnivaǌu
realnih brojeva. Svaki nastavnik ²e, naravno, prilagoditi nivo izlagaǌa svo-
jim uqenicima, tj. odeǉeǌu u kojem predaje. Posebno, u osnovnoj xkoli bi²e
pomenuti samo najosnovniji elementi izlagaǌa koje sledi.

Pomenuti pristup bi²e opisan u prvom delu qlanka (odeǉci 2 i 3). No, da
bi se videlo koji su stvarni koraci potrebni da bi se uvo±eǌe realnih brojeva
strogo realizovalo (a slêde²i princip da ,,nastavnik mora da zna (mnogo) vixe
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od onoga xto ²e ispriqati uqenicima“) predstavi²emo u odeǉcima 4 i 5 s nexto
vixe detaǉa dva mogu²a naqina strogog uvo±eǌa realnih brojeva – pristupe
pomo²u beskonaqnih decimalnih zapisa i tzv. Dedekindovih preseka.

2. Naqini definisaǌa skupa realnih brojeva

Postupci pomo²u kojih se mo¼e korektno uvesti skup realnih brojeva mogu
se podeliti na konstrukcijske i aksiomatske.

Konstrukcijski pristupi
Svaki od konstrukcijskih naqina uvo±eǌa realnih brojeva podrazumeva da

se na eksplicitan naqin opixe koji su elementi skupa R. Navedimo neke od
mogu²nosti za to:
• beskonaqni decimalni zapisi;
• taqke na brojevnoj pravoj (odnosno mere odgovaraju²ih du¼i);
• Dedekindovi preseci;
• Koxijevi nizovi;
• monotoni nizovi.

Ono xto svakako mora da sledi nakon opisivaǌa samih elemenata skupa R
jeste definisaǌe osnovnih operacija i relacija u tom skupu. Preciznije, tre-
ba uvesti operacije sabiraǌa (+) i mno¼eǌa (·), kao i relaciju poretka (6) i
dokazati da one imaju svojstva koja se od ǌih oqekuju – da su one ,,produ¼eci“
odgovaraju²ih operacija i relacije iz skupa racionalnih brojeva, tj. da je
zadovoǉen princip permanencije. Najzad, potrebno je dokazati da novi sis-
tem (R, +, ·,6) ima kǉuqne nove osobine koje otklaǌaju poznate nedostatke sis-
tema (Q,+, ·, 6). Sve ovo (u bilo kom od izabranih naqina definisaǌa) zahteva
priliqno obiman posao (na primer, u kǌigama [1], odnosno [2], on je izlo¼en na
30–40 strana).

Aksiomatski pristup
Aksiomatski naqin uvo±eǌa realnih brojeva nas na prvi pogled osloba±a

ovih glomaznih izvo±eǌa. Najpre se bira neki spisak aksioma strukture
(R,+, ·, 6) koje prihvatamo da su taqne bez dokaza (a koje su, osim posledǌe,
zaista potpuno oqekivana svojstva te strukture), na primer:

(1) svojstva sabiraǌa:
(1.1) (∀x, y ∈ R) x + y = y + x (komutativnost sabiraǌa),
(1.2) (∀x, y, z ∈ R) (x + y) + z = x + (y + z) (asocijativnost sabiraǌa),
(1.3) (∃0 ∈ R)(∀x ∈ R)x + 0 = x (neutralni element za sabiraǌe),
(1.4) (∀x ∈ R)(∃(−x) ∈ R)x + (−x) = 0 (suprotni element za sabiraǌe);

(2) svojstva mno¼eǌa:
(2.1) (∀x, y ∈ R) x · y = y · x (komutativnost mno¼eǌa),
(2.2) (∀x, y, z ∈ R) (x · y) · z = x · (y · z) (asocijativnost mno¼eǌa),
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(2.3) (∃1 ∈ R \ {0})(∀x ∈ R)x · 1 = x (neutralni element za mno¼eǌe),
(2.4) (∀x ∈ R \ {0})(∃x−1 ∈ R) x · x−1 = 1 (inverzni element za mno¼eǌe),
(2.5) (∀x, y, z ∈ R)x · (y + z) = x · y + x · z (distributivnost mno¼eǌa prema

sabiraǌu);
(3) svojstva relacije 6:

(3.1) (∀x ∈ R) x 6 x (refleksivnost),
(3.2) (∀x, y ∈ R)(x 6 y ∧ y 6 x ⇒ x = y) (antisimetriqnost),
(3.3) (∀x, y, z ∈ R)(x 6 y ∧ y 6 z ⇒ x 6 z) (tranzitivnost),
(3.4) (∀x, y ∈ R) (x 6 y ∨ y 6 x) (linearnost poretka),
(3.5) (∀x, y, z ∈ R)(x 6 y ⇒ x + z 6 y + z) (saglasnost sa sabiraǌem),
(3.6) (∀x, y ∈ R)(0 6 x ∧ 0 6 y ⇒ 0 6 x · y) (saglasnost s mno¼eǌem);

(4) aksioma neprekidnosti:
svaki neprazan, odozgo ograniqen skup u R ima supremum u R.

Zatim se relativno lako izvode standardna ,,pravila raqunaǌa“ (videti, na
primer, kǌige [3] i [4]). Preostaje da se koncentrixemo na izvo±eǌe posledica je-
dine ,,netrivijalne“ aksiome (4) – neke od mogu²ih varijanti aksiome neprekid-
nosti – koje su bitne za zasnivaǌe teorije graniqnih vrednosti i neprekidnosti
funkcija.

Me±utim, ta jednostavnost je samo prividna. Naime, ono xto svakako ne-
dostaje ovakvom pristupu jeste dokaz da takva struktura postoji, tj. konstrukci-
ja (bar jedne) konkretne realizacije pomenute struktrue, jer samo tako mo¼emo
biti sigurni da izabrani sistem aksioma nije kontradiktoran. A to nas vra²a
na poqetak – na potrebu efektivne konstrukcije realnih brojeva.

Jedinstvenost
U oba pristupa definiciji skupa R potrebno je uraditi jox nexto – dokaza-

ti da je datim osobinama skup realnih brojeva jednoznaqno odre±en (do na izo-
morfizam). Pod tim podrazumevamo slede²e.

Pretpostavimo da su mogu²e dve realizacije naxeg sistema aksioma – u
jednoj se radi o skupu R1 sa operacijama +1 i ·1 i relacijom 61, a u drugoj o
skupu R2 sa operacijama +2 i ·2 i relacijom
poretka 62. Kaza²emo da su te dve realizacije
izomorfne ako postoji funkcija f : R1 → R2

koja je bijekcija i takva da je za svaka dva
elementa x, y ∈ R1 ispuǌeno (v. sliku 1):

f(x +1 y) = f(x) +2 f(y),

f(x ·1 y) = f(x) ·2 f(y),

x 61 y ⇐⇒ f(x) 62 f(y).
R1 R2

x y1

x y

+

f(x)

f

f(x)    f(y)

f(y)

2+

Slika 1
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Drugim reqima, kod izomorfnih realizacija svi me±usobni odnosi quvaju se pri
preslikavaǌu funkcijom f , koja se naziva izomorfizmom pomenutih realizaci-
ja. Podsetimo se da u sluqaju nekih drugih struktura – npr. u sluqaju grupe,
prstena ili poǉa (koje ne mora da zadovoǉava aksiomu neprekidnosti) mo¼e da
se dogodi da postoje neizomorfne realizacije. Ali, u sluqaju aksioma realnih
brojeva to nije mogu²e – mo¼e se dokazati (v. npr. [1], [4] ili [5]) da su sve
mogu²e realizacije aksioma strukture (R, +, ·, 6) izomorfne. Drugim reqima, u
kojem god konkretnom obliku (od napred navedenih) da zamislimo realne brojeve,
radi²emo u suxtini u istom okru¼eǌu i zakǉuqci koje budemo izvodili bi²e
ekvivalentni.

3. Uvo�eǌe realnih brojeva u xkoli

Motivacija
Prvi korak prilikom uvo±eǌa skupa realnih brojeva u nastavi (u bilo kom

od napred pomenutih razreda) svakako treba da bude ,,ube±ivaǌe“ uqenika da je
tako nexto potrebno, tj. navo±eǌe nedostataka strukture (Q,+, ·, 6) racionalnih
brojeva.

I u sedmom razredu osnovne i u prvom razredu sredǌe xkole treba poqeti
podse²aǌem na to koji su bili razlozi proxirivaǌa skupa prirodnih brojeva N
do skupa Q+ pozitivnih razlomaka, kao i ovog posledǌeg do skupa Q racionalnih
brojeva (na primer, nemogu²nost rexavaǌa jednaqine a ·x = b u skupu prirodnih
brojeva, odnosno a + x = b u skupu pozitivnih razlomaka). Pri tome su, u
oba sluqaja, eksplicitno uvedeni novi brojevi (za jedan mogu²i naqin preciznog
uvo±eǌa pomenutih skupova brojeva videti qlanak [6]).

Na prethodno se direktno nadovezuje priqa o nemogu²nosti rexavaǌa jed-
naqine x2 = 2 (i ǌoj sliqnih) u skupu racionalnih brojeva.

Naglasimo ovde da odgovaraju²e tvr±eǌe ne treba da glasi
,,(kvadratni) koren iz 2 nije racionalan broj“, ve�
,,ne postoji racionalan broj qiji je kvadrat jednak 2“.

Razlog je, naravno, taj xto dok nemamo na raspolagaǌu realne brojeve, sam pojam
korena uopxte ne mo¼e biti definisan (sem u retkim specijalnim sluqajevima).
Pri tome, (dobro poznati) pitagorejski dokaz ove qiǌenice ne bi smeo da se
,,preskoqi“, qak ni u osnovnoj xkoli – radi se o izuzetno va¼noj qiǌenici i,
bez obzira na to xto verovatno neki od uqenika (mo¼da i ve²ina ǌih) ne²e u
potpunosti razumeti sve korake tog dokaza, ve² sâmo ǌegovo izlagaǌe uqini²e,
nadamo se, da prihvate da je tako nexto potrebno, a onda je verovatnije da ²e im
i sama ta qiǌenica pre ostati u se²aǌu.

Za demonstraciju drugog poznatog nedostatka skupa racionalnih brojeva –
nemogu²nosti mereǌa proizvoǉnih du¼i, tj. postojaǌa nesamerǉivih du�i –
u sedmom razredu jox ne mo¼e da se koristi Pitagorina teorema, jer se ona po
programu obra±uje kasnije. Ali, mogu²e je kao primer koristiti kvadrat qija
dijagonala ima du¼inu 2 (a qija je i povrxina jednaka 2), a stranica bi onda
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morala imati du¼inu qiji je kvadrat jednak 2. (Strogo govore²i, takav pristup
bi zahtevao obrazlo¼eǌa oko veze linearnih mera i mera za povrxinu, ali to je
nexto xto se ipak mo¼e preskoqiti u ǌihovom sluqaju.) Preporuqujemo da se o
nemogu²nosti mereǌa dijagonale kvadrata pomo²u ǌegove stranice (v. sliku 2)
govori odmah nakon obrade Pitagorine teoreme (a u prvom razredu sredǌe xkole
istovremeno sa priqom o jednaqini x2 = 2). Pri tome, dosta je va¼no pomenuti
i druge du¼i (npr. obim jediniqnog kruga) koje se ne mogu izmeriti pomo²u date
jediniqne du¼i (v. sliku 3 na kojoj je du¼ OA jednaka obimu nacrtanog kruga
preqnika 1), izme±u ostalog i zato da bi se izbegao utisak koji mnogi ±aci
ponesu – da su iracionalni brojevi samo ,,tamo neki koreni“.

Slika 2 Slika 3

Dakle, smatramo pogrexnim pristup (prisutan u mnogim u­benicima) u kojem
se ne insistira na tome da su realni (i, specijalno, iracionalni) brojevi nexto
xto tek treba uvesti, definisati, ve² se oni tretiraju kao nexto xto postoji i
treba samo da ih ,,prepoznamo“. Ili, malo drugaqije iskazano, velika je grexka
(koja se, uglavnom, ne iskazuje ovako ekspliicitno, ali se praktiqno provlaqi u
nekim izlagaǌima) ,,servirati“, kao neku vrstu definicije, uqenicima slede²e
dve reqenice:

,,Iracionalni brojevi su realni brojevi koji nisu racionalni“,
,,Skup realnih brojeva se dobija kao unija skupova racionalnih i iracional-

nih brojeva“.
Naravno, skupovne jednakosti

(5) R \Q = I, Q ∪ I = R,

koje se navode u skoro svim u­benicima, taqne su, ali nikako ne mogu da poslu¼e
kao definicije skupa realnih brojeva.

Uvo�eǌe novih brojeva
Ako smo ovim uspeli da ubedimo uqenike da je neophodno uvesti novu vrstu

brojeva, postavǉa se pitaǌe kako to treba uqiniti. Aksiomatski naqin svakako
ne dolazi u obzir u osnovnoj xkoli, a prema naxem mixǉeǌu ni u prvom razredu
gimnazije (mada je prisutan u nekim u­benicima). Od konstrukcijskih varijanti,
ponegde se pojavǉuje (eksplicitno ili implicitno) geometrijski pristup koji se
praktiqno bazira na zahtevu da ,,svaka du¼ ima svoju du¼inu“. Ne poriqu²i da
je, u principu, mogu²e uvesti realne brojeve na taj naqin, qini nam se da on nije
pogodan za korix²eǌe u xkolama, i to iz dva razloga – prvi je da on ipak ne nudi
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,,opipiǉiv“ oblik brojeva koje uvodimo; drugi razlog je xto postoje problemi
kod definisaǌa operacija sa du¼inama du¼i kao realnim brojevima. Na primer,
kod definisaǌa proizvoda bilo bi potrebno prethodno znati precizno kako se
uvodi povrxina pravougaonika.

Zbog svega napred navedenog, smatramo da je mnogo pogodnije realne brojeve
definisati kao beskonaqne decimalne zapise. Naime, uqenici u sedmom razredu
osnovne xkole (a svakako i u prvom sredǌe) znaju da se racionalni brojevi mogu
predstaviti kao konaqni ili periodiqno-beskonaqni decimalni zapisi, pa ne bi
trebalo da im je texko da zamisle i beskonaqne neperiodiqne zapise, uz navo±eǌe
nekoliko konkretnih primera. Recimo, mo¼e se navesti slede²i dobro poznati
primer.

Primer 1. Posmatrajmo decimalni zapis

0,10100100010 . . . 010 . . .

u kojem se posle svake jedinice pojavǉuje niz nula, svaki put za jedan du¼i nego
prethodni. Ovaj zapis nije periodiqan.

Dokaz. Pretpostavimo, suprotno, da je ovaj zapis periodiqan s periodom
du¼ine k. Dovoǉno daleko u nizu ǌegovih cifara postoji niz od 2k uzastopnih
nula:

0,101001 . . . 1 00 . . . 0︸ ︷︷ ︸
2k

10 . . .

Tada nekih k od tih cifara qine jednu celu periodu. To bi znaqilo da su
sve cifre posle uoqenih k nula tako±e jednake nuli; drugim reqima, sve cifre
poqev od neke, u ovom decimalnom zapisu jednake su nuli, xto je jasno netaqno.
Dobijena kontradikcija dokazuje da ovaj zapis ne mo¼e biti periodiqan.

Sliqan je i primer broja 0,12345678910111213 . . . u kojem su, kao decimale,
redom ispisani svi prirodni brojevi (u ǌihovom dekadnom zapisu).

Sada je prirodno uvesti slede²u osnovnu definiciju.

Definicija 1. Skup svih beskonaqnih decimalnih zapisa oblika

(6) +a0,a1a2 . . . an . . . ili −a0,a1a2 . . . an . . . ,

gde je a0 prirodan broj ili nula, a a1, a2, . . . , an, . . . su dekadne cifre (tj.
elementi skupa {0, 1, . . . , 9}), zva²emo skup realnih brojeva i oznaqava²emo ga
sa R. Brojeve prvog od navedenih oblika (6) zva²emo pozitivnim (i znak +
pri ǌihovom navo±eǌu najqex²e ne²emo pisati), a brojeve drugog oblika ne-
gativnim, s tim da broj nula (tj. 0 = 0,000 . . . ) ne smatramo ni pozitivnim
ni negativnim. Pritom jox usvajamo dogovor da se, na primer, zapisi 1,000 . . .
i 0,999 . . . smatraju jednakim (odre±uju isti realan broj) i sliqno u ostalim
odgovaraju²im sluqajevima.

Ovako uvedeni skup R obuhvata zapise dveju vrsta:
1◦ beskonaqne decimalne zapise koji su periodiqni (specijalan sluqaj takvih

zapisa su oni kod kojih su sve cifre poqev od neke jednake nuli – ǌih
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mo¼emo shvatiti kao da su dobijeni iz konaqnih decimalnih zapisa koji-
ma je dopisano beskonaqno mnogo nula);

2◦ neperiodiqne beskonaqne decimalne zapise.
Svakom od zapisa oblika 1◦ odgovara odre±eni racionalan broj. Obratno

nije taqno – neki racionalni brojevi imaju dva zapisa (koji se zavrxavaju ili
svim nulama, ili svim devetkama).

Zapisi oblika 2◦ odgovaraju novouvedenim brojevima – za takve realne bro-
jeve re²i ²emo da su iracionalni i skup svih takvih brojeva oznaqava²emo sa I.
Pri tome va¼e ranije pomenute skupovne relacije (5).

Definisaǌe operacija i relacije poretka
Svakako treba odmah re²i uqenicima da sâmo definisaǌe objekata koje ²emo

zvati realnim brojevima nije dovoǉno – neophodno je opisati kako se s tim objek-
tima raquna. Jer, sasvim je jasno da postupci sabiraǌa i mno¼eǌa (o oduzimaǌu
i deǉeǌu i da ne govorimo) koje su primeǌivali kod konaqnih decimalnih zapisa
ovde vixe nisu mogu²i. O ovome se potpuno precizno ne mo¼e govoriti u osnovnoj
xkoli, ali mislimo da je uz nekoliko primera ura±enih pomo²u kalkulatora
mogu²e demonstrirati raqun s pribli¼nim vrednostima (vide²emo u odeǉku 4.
da je stvarna definicija operacija u ovako uvedenom skupu R bazirana na imi-
taciji raquna s pribli¼nim vrednostima). U prvom razredu sredǌe xkole sve
se to mo¼e uqiniti jox lakxe, jer u odgovaraju²em programu upravo figurixe
deo o raqunu s pribli¼nim vrednostima realnih brojeva.

Primer 2. Izraqunati zbir
√

2 +
√

3.
Pomo²u kalkulatora nalazimo da je:
a =

√
2 = 1,41421356 . . . , b =

√
3 = 1,73205080 . . .

Sabiraǌe po pravilima za konaqne zapise nije mogu²e. Zato raqunamo:

1 < a < 2, 1 < b < 2
2 < a + b < 4;

1,4 < a < 1,5, 1,7 < b < 1,8
3,1 < a + b < 3,3;

1,41 < a < 1,42, 1,73 < b < 1,74
3,14 < a + b < 3,16;

1,414 < a < 1,415, 1,732 < b < 1,733
3,146 < a + b < 3,148;

1,4142 < a < 1,4143, 1,7320 < b < 1,7321
3,1462 < a + b < 3,1464;

. . . . . . . . .

Na ovaj naqin mo¼emo dobiti rezultat sa ¼eǉenim brojem decimala. Na primer,√
2 +

√
3 ≈ 3,14626437.
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Primer 3. Izraqunati proizvod π · √3.

a = π = 3,14159265 . . . , b =
√

3 = 1,73205080 . . .

3 < a < 4, 1 < b < 2
3 < a · b < 8;

3,1 < a < 3,2, 1,7 < b < 1,8
5,2 < a · b < 5,7;

3,14 < a < 3,15, 1,73 < b < 1,74
5,43 < a · b < 5,48;

3,141 < a < 3,142, 1,732 < b < 1,733
5,440 < a · b < 5,445;

3,1415 < a < 3,1416, 1,7320 < b < 1,7321
5,4410 < a · b < 5,4415;

. . . . . . . . .

i tako daǉe. Na primer, π · √3 ≈ 5,44139809.
Nexto je lakxe uvesti relaciju poretka, na primer, na slede²i naqin:

Definicija 2. Neka su dati pozitivni realni brojevi

a = a0,a1a2 . . . an . . . , b = b0,b1b2 . . . bn . . . ,

(podrazumevamo, recimo, da se oni ne zavrxavaju iskǉuqivo devetkama). Upore-
dimo najpre ǌihove ,,cele delove“ – ako je, na primer, a0 < b0, onda ka¼emo da
je a < b. Ako su oni jednaki, upore±ujemo prve decimale – ako je a1 < b1, opet
ka¼emo da je a < b. Ovaj postupak nastavǉamo dok ne do±emo do prve decimale
(npr. k-te) ovih brojeva koje su razliqite. A ako se desi da je ak = bk za svako
k ∈ N ∪ {0}, onda je svakako a = b.

U sluqaju brojeva proizvoǉnog znaka, ova definicija se lako prilago±ava.

Najzad, ne treba propustiti da se ka¼e da tek kada su realni brojevi uvedeni
i ǌihova svojstva izvedena (istina, za sada bez dokaza), mo¼e se govoriti o
korenima iz pozitivnih brojeva (u poqetku kvadratnim, a kasnije i proizvoǉnog
reda), s tim da sada mo¼e da se doka¼e da oni postoje. U sredǌoj xkoli se, kao
xto ²emo videti, nexto od toga mo¼e i dokazati.

Svojstvo neprekidnosti
Ostaje pitaǌe xta qiniti u tre²em razredu sredǌe xkole. Nax je pred-

log da se u struqnim xkolama, kao i smerovima gimnazije koji nisu prirodno-
matematiqki, ne ide mnogo daǉe od napred opisanog, samo se mogu neki detaǉi
izvesti preciznije. Jedino je u prirodno-matematiqkom smeru (i, naravno, u
Matematiqkoj gimnaziji gde je to predvi±eno programom) mogu²e realne brojeve
uvesti aksiomatski, s tim da ne treba pre²utati probleme koje takav pristup
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ima (a o kojima smo govorili ranije). Svakako, treba insistirati na nekoj va-
rijanti aksiome neprekidnosti (koja je prethodno geometrijski interpretirana)
i ǌenom korix²eǌu u Matematiqkoj analizi. Predla¼emo ǌeno isticaǌe bar
na dva mesta – najpre, u ve² pomenutom dokazu egzistencije korena iz pozitivnog
broja, a zatim u dokazu teoreme o postojaǌu limesa monotonog i ograniqenog
niza.

Mada su dobro poznati, ponovimo ovde ta dva dokaza (uporediti dokaz drugog
tvr±eǌa s dokazom ǌegovog uopxteǌa pomo²u Dedekindovog pristupa u posledǌem
odeǉku ovog qlanka).

Podsetimo se prethodno definicije nekih pojmova.

Definicija 3. Neprazan skup A ⊂ R je odozgo ograniqen ako postoji
b ∈ R tako da je a 6 b za sve a ∈ A; takav broj b ∈ R je majoranta skupa A;
najmaǌa majoranta (ako postoji) je supremum skupa A (oznaka sup A).

Pojmovi odozdo ograniqenog skupa, minorante i infimuma se uvode na sliqan
naqin.

Dakle, x = sup A ako i samo ako
{

1◦ (∀a ∈ A) a 6 x,

2◦ (∀x′) ((∀a ∈ A) a 6 x′ =⇒ x 6 x′).

Napomena. Prethodni uslovi mogu da se zapixu i u obliku (v. sliku 4)
{

1◦ (∀a ∈ A) a 6 x,

2◦ (∀ε > 0)(∃b ∈ A) b > x− ε.

Slika 4

Pod pretpostavkom da znamo da va¼i svojstvo supremuma, tj. da svaki nepra-
zan, odozgo ograniqeni podskup skupa R ima supremum u R, doka¼imo da va¼i

Teorema 1. Postoji (i to jedinstven) pozitivan realan broj qiji je
kvadrat jednak 2.

Dokaz. Posmatrajmo skup A = {x ∈ R | x2 < 2 }. On je svakako neprazan
(na primer, 1 ∈ A) podskup skupa R koji je ograniqen odozgo (na primer, broj 2
je jedna ǌegova majoranta). Zato on ima supremum – oznaqimo ga sa y = sup A.
Doka¼imo da je upravo y2 = 2.

Kao xto znamo, dovoǉno je pokazati da nije y2 < 2 niti y2 > 2. Ako bi bilo,

recimo, y2 < 2, izabra²emo prirodan broj n za koji je n >
2y + 1
2− y2

(takav broj

postoji prema Arhimedovom svojstvu, za koji od ranije znamo da va¼i u skupu
racionalnih brojeva). Tada je

(
y +

1
n

)2

= y2 + 2y
1
n

+
1
n2

< y2 + (2y + 1)
1
n

< y2 + (2− y2) = 2,
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pa broj y +
1
n

pripada skupu A. Kako je on, oqigledno, ve²i od y, doxli smo
u situaciju da je jedan element skupa A ve²i od ǌegovog supremuma, xto je,
naravno, nemogu²e.

Na sliqan naqin se pokazuje da ne mo¼e biti ni y2 > 2. Dakle, broj y ∈ R+

zadovoǉava uslov y2 = 2. Pretpostavimo da postoji jox jedan pozitivan realan
broj z za koji je z2 = 2, i da je, na primer y < z. Tada bi bilo 2 = y2 < z2 = 2,
xto je netaqno. Znaqi, broj y sa tra¼enim osobinama je jedinstveno odre±en.

Jasno je da se analogno tvr±eǌe za bilo koji drugi pozitivan realan broj
(umesto dvojke) mo¼e dokazati sliqno. Dokaz odgovaraju²eg tvr±eǌa za koren
proizvoǉnog reda nexto je tehniqki slo¼eniji (videti npr. [3] ili [7]).

Teorema 2. Svaki rastu�i i odozgo ograniqeni niz (an) realnih broje-
va je konvergentan. Svaki opadaju�i i odozdo ograniqeni niz (an) realnih
brojeva je konvergentan.

Dokaz. Dokaza²emo tvr±eǌe za sluqaj rastu²eg niza. Neka je

a1 6 a2 6 · · · 6 an 6 · · ·

i neka postoji realan broj M takav da je an 6 M za sve n ∈ N. Posmatrajmo
skup svih vrednosti datog niza

A = {a1, a2, . . . , an, . . . }.

Na osnovu pretpostavke, taj (neprazan) skup je ograniqen odozgo podskup skupa
realnih brojeva. Na osnovu svojstva supremuma, postoji supremum tog skupa,
broj a = sup A. Dokaza²emo da je upravo a = lim

n→∞
an.

a

)(
a−" a+"

a1 a2 a3

a

)(
a−ε a+ε

an0

Slika 5 Slika 6

Posmatrajmo proizvoǉnu okolinu (a− ε, a+ ε) taqke a. Bar jedan qlan niza
(an) pripada toj okolini, jer bi se u protivnom svi qlanovi niza nalazili levo
od taqke a − ε, pa bi taj broj bio majoranta skupa A, xto je nemogu²e jer je on
maǌi od supremuma a tog skupa, slika 5. Neka qlan an0 niza (an) pripada okolini
(a− ε, a + ε). Kako je niz (an) rastu²i, to za sve n > n0 va¼i an > an0 > a− ε,
slika 6. S druge strane je an 6 a < a + ε, jer je a supremum skupa A. Prema
tome, za sve qlanove niza, poqevxi od onog sa indeksom n0 va¼i

a− ε < an < a + ε,

odnosno svi oni se nalaze u ε-okolini taqke a, pa je zaista lim
n→∞

an = a.
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4. Realni brojevi kao beskonaqni decimalni zapisi

U ovom i narednom odeǉku opisujemo ukratko dva naqina preciznog definisa-
ǌa skupa realnih brojeva. Za uvo±eǌe realnih brojeva kao beskonaqnih decimal-
nih zapisa, koje prikazujemo u ovom odeǉku, pratimo, uz odre±ena skra²ivaǌa,
postupak dat u kǌizi [1].

Pretpostavǉa²emo da su nam poznata osnovna svojstva ure±enog poǉa
(Q, +, ·,6) (navedena u odeǉku 2 u okviru prve tri grupe aksioma) i ǌihove
posledice, ukǉuquju²i qiǌenicu da svaki racionalan broj ima svoj decimal-
ni zapis, koji mo¼e biti konaqan ili periodiqno-beskonaqan. Radi kra²eg
izra¼avaǌa, smatra²emo i konaqne decimalne zapise periodiqno-beskonaqnim
(time xto svakom od ǌih dopisujemo beskonaqno mnogo nula).

Osnovna definicija 1 skupa realnih brojeva u obliku beskonaqnih deci-
malnih zapisa (6) data je na strani 6. S obzirom na tamo navedenu konvenciju,
iz razmatraǌa ²emo iskǉuqiti zapise koji se zavrxavaju s beskonaqno mnogo
devetki.

Apsolutna vrednost datih brojeva (6) je broj

|a| = a0, a1a2a3 . . . an . . . .

Relacija poretka u skupu R
Relacija < u skupu R uvodi se definicijom 2 datom na strani 8. Kaza²emo

da je a maǌe ili jednako od b i pisati a 6 b ako va¼i a < b ili a = b.

Lema 1. Relacija 6 na skupu R je relacija totalnog poretka, tj.
zadovoǉena su svojstva (3.1)–(3.4) navedena na strani 3.

Dokaz. Dokazi navedenih svojstava su jednostavni. Ilustracije radi, do-
ka¼imo svojstvo tranzitivnosti (3.3), pri qemu ²emo se ograniqiti na sluqaj
kad su a, b, c me±usobno razliqiti pozitivni brojevi. Dakle, treba dokazati da
iz a < b i b < c sledi da je a < c. Neka su

a = a0,a1a2a3 . . . ; b = b0,b1b2b3 . . . ; c = c0,c1c2c3 . . .

decimalni zapisi datih brojeva. Prema definiciji, iz a < b sledi da postoji
broj k ∈ N0 takav da je

(7) a0 = b0, a1 = b1, . . . , ak−1 = bk−1, ak < bk.

Sliqno, iz b < c sledi da postoji l ∈ N0 takav da je

(8) b0 = c0, b1 = c1, . . . , bl−1 = cl−1, bl < cl.

Oznaqimo m = min{k, l}. Tada iz (7) i (8) sledi da va¼i

a0 = c0, a1 = c1, . . . , am−1 = cm−1, am < cm,

xto i znaqi da je a < c.
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Postojaǌe taqnih granica
Pojmovi odozgo ograniqenog skupa, majorante i supremuma uvode se defini-

cijom 3 datoj na strani 9. Doka¼imo sada osnovno svojstvo skupa realnih brojeva
po kojem se on razlikuje od skupa racionalnih brojeva.

Teorema 3. Svaki neprazan, odozgo ograniqen skup u R ima supremum
u R; svaki neprazan, odozdo ograniqen skup u R ima infimum u R.

Dokaz. Dokaza²emo tvr±eǌe teoreme za sluqaj supremuma.
1◦ Sluqaj (∃a ∈ A) a > 0. Posmatrajmo skup { [a] | a ∈ A, a > 0 } svih ,,celih

delova“ [a] nenegativnih elemenata skupa A; on je ograniqen podskup skupa N0,
pa ima maksimum – oznaqimo ga sa x0. Posmatrajmo brojeve a ∈ A za koje je
[a] = x0 i ǌihove prve decimale; postoji ǌihov maksimum, oznaqimo ga sa x1,
itd. Doka¼imo da je

x = x0, x1x2 . . . = sup A.

Zaista, a 6 x za sve a ∈ A va¼i na osnovu naqina izbora decimala broja x. Neka
je x′ < x i, na primer, x′ > 0. Ako je x′ = x′0, x

′
1x
′
2 . . . , tada postoji m tako da je

x′ = x0,x1 . . . xm−1x
′
m . . . , x′m < xm.

Tada za b = x0, x1 . . . xm imamo da je x′ < b < x.
2◦ Sluqaj kad je a 6 0 za sve a ∈ A razmatra se sliqno.

Aproksimacija realnih brojeva racionalnim
Za precizno definisaǌe operacija u skupu R bi²e nam potrebna neka po-

mo²na tvr±eǌa o mogu²nosti aproksimacije realnih brojeva racionalnim.

Lema 2. Za svaki realan broj a i svako racionalno ε > 0 postoje
racionalni brojevi α1 i α2 takvi da je α1 6 a 6 α2 i α2 − α1 < ε.

Dokaz. Neka je npr. a = a0,a1a2a3 . . . pozitivan. Za dato ε ∈ Q+ izaberimo
n ∈ N tako da je 10−n < ε (ovo je mogu²e na osnovu ve² pomenutog Arhimedovog
svojstva skupa racionalnih brojeva). Za racionalne brojeve α1 = a0,a1a2 . . . an

i α2 = α1 + 10−n oqigledno va¼i α1 6 a 6 α2 i α2 − α1 = 10−n < ε.

Lema 3. Za svaka dva realna broja a, b, a < b, postoji racionalan broj
α takav da je a < α < b.

Dokaz. Mo¼emo pretpostaviti da su brojevi a, b nenegativni. Neka je
a = a0,a1a2 . . . i b = b0,b1b2 . . . (ovaj put, izuzetno, ako je broj b racionalan
s konaqnim decimalnim zapisom, pretpostavimo da smo ga zapisali tako da se
zavrxava s beskonaqno mnogo devetki). Zbog a < b, postoji k ∈ N tako da je
a0 = b0, a1 = b1, . . . , ak−1 = bk−1 i ak < bk, pri qemu nisu sve decimale broja b
poqev od neke jednake nuli. Oznaqimo sa p najmaǌi od brojeva n, ve²ih od k za
koje je bn 6= 0. Tada se broj b zapisuje u obliku

b = b0,b1 . . . bk0 . . . 0bp . . . , gde je bp > 0.

Sada broj α = b0,b1 . . . bk0 . . . 0bp zadovoǉava uslov a < α < b.
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Lema 4. Neka su a, b ∈ R. Ako za svako ε ∈ Q, ε > 0 postoje racionalni
brojevi γ1, γ2 takvi da je γ1 6 a 6 γ2, γ1 6 b 6 γ2 i γ2− γ1 < ε, tada je a = b.

Dokaz. Pretpostavimo, suprotno tvr±eǌu, da je, na primer, a < b. Na
osnovu leme 3, postoje racionalni brojevi α1, α2 takvi da je

(9) a < α1 < α2 < b.

Izaberimo proizvoǉne racionalne brojeve γ1, γ2 takve da je γ1 6 a 6 γ2 i γ1 6
b 6 γ2. Iz uslova (9) dobijamo da je γ1 < α1 < α2 < γ2. Ali tada je obavezno
γ2 − γ1 > α2 − α1, xto protivreqi pretpostavci da razlika γ2 − γ1 mo¼e biti
izabrana tako da bude proizvoǉno mala.

Sabiraǌe u skupu R

Definicija 4. Za brojeve a, b ∈ R, ka¼emo da je broj x ∈ R ǌihov zbir
i oznaqavamo x = a + b ako za proizvoǉne racionalne brojeve α1, α2, β1, β2 iz
α1 6 a 6 α2 i β1 6 b 6 β2 sledi α1 + β1 6 x 6 α2 + β2.

Qitaocu predla¼emo da uporedi ovu definiciju sa naqinom kako smo u
primerima 2 i 3 (str. 7 i 8) odre±ivali decimale brojeva

√
2 +

√
3 i π · √3.

Teorema 4. Za bilo koja dva realna broja a, b, broj x opisan u definici-
ji 4 postoji i jedinstveno je odre�en. Sem toga, ako su brojevi a, b racional-
ni, onda se kao zbir dobija broj a + b, shva�en kao zbir racionalnih brojeva.

Dokaz. 1◦ Egzistencija. Fiksirajmo proizvoǉne α2, β2 ∈ Q za koje je
a 6 α2 i b 6 β2 i posmatrajmo skup

A = {α1 + β1 | α1, β1 ∈ Q, α1 6 a, β1 6 b }.
Taj skup je ograniqen odozgo (zaista, iz α1 6 a i a 6 α2 sledi da je α1 6 α2 i,
sliqno, β1 6 β2, a iz posledǌe dve nejednakosti sledi da je α1 + β1 6 α2 + β2).
Na osnovu teoreme 3, sledi da postoji x = sup A – dobijeni broj x zadovoǉava
uslov naveden u definiciji 4. Zaista, nejednakost α1 + β1 6 x sledi direktno
iz qiǌenice da je x majoranta skupa A, a nejednakost x 6 α2 + β2 iz qiǌenice
da je broj α2 + β2 tako±e jedna od majoranti tog skupa, pa ne mo¼e biti maǌa od
najmaǌe majorante x.

2◦ Jedinstvenost. Pretpostavimo da, osim na±enog broja x, postoji jox
jedan broj y ∈ R, takav da tako±e va¼i α1 + β1 6 y 6 α2 + β2 za sve racionalne
brojeve α1, α2, β1, β2 za koje je

(10) α1 6 a 6 α2 i β1 6 b 6 β2.

Fiksirajmo proizvoǉno ε ∈ Q+. Na osnovu leme 2, postoje takvi racionalni
brojevi α1 i α2 da je α1 6 a 6 α2 i α2 − α1 6 ε/2, kao i racionalni brojevi β1

i β2 takvi da je β1 6 b 6 β2 i β2 − β1 6 ε/2. Tada va¼e uslovi (10), pa brojevi
x i y zadovoǉavaju uslove α1 + β1 6 x 6 α2 + β2 i α1 + β1 6 y 6 α2 + β2, koje
mo¼emo prepisati u obliku γ1 6 x 6 γ2, γ1 6 y 6 γ2, pri qemu je

γ2 − γ1 = (α2 + β2)− (α1 + β1) = (α2 − α1) + (β2 − β1) < ε/2 + ε/2 = ε.

Dakle, brojevi x i y zadovoǉavaju uslove leme 4, pa moraju biti jednaki.
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3◦ Neka su a i b racionalni brojevi i a + b ǌihov zbir (u smislu sabi-
raǌa u skupu Q), i neka su α1, α2, β1, β2 proizvoǉni racionalni brojevi koji
zadovoǉavaju uslove (10). Tada va¼i i α1 + β1 6 a + b 6 α2 + β2, pri qemu je,
na osnovu dokazanog uslova jedinstenosti, a + b jedini broj koji zadovoǉava ovu
dvostruku nejednakost za sve α1, α2, β1, β2, tj. on je upravo zbir brojeva a i b u
smislu definicije 4.

Teorema 5. Za sabiraǌe realnih brojeva va�e svojstva (1.1)–(1.4) i
(3.5) iz spiska aksioma realnih brojeva (odeǉak 2, str. 2 i 3).

Dokaz. Dokaza²emo samo svojstvo (3.5), tj. da, za proizvoǉne realne brojeve
a, b, c, iz a < b sledi a + c < b + c.

Iz a < b, na osnovu leme 3, sledi da postoje α2, β1 ∈ Q takvi da je a < α2 <
β1 < b. Za dati c ∈ R i za pozitivan racionalan broj ε = β1 − α2, na osnovu
leme 2, postoje γ1, γ2 ∈ Q tako da va¼i γ1 6 c 6 γ2 i γ2 − γ1 < ε. Neka su α1 i
β2 proizvoǉni racionalni brojevi takvi da je α1 6 a i β2 > b. Tada va¼i

(11) α1 + γ1 6 a + c 6 α2 + γ2 i β1 + γ1 6 b + c 6 β2 + γ2.

Sem toga je α2 + γ2 < β1 + γ1 (sledi iz γ2 − γ1 < ε = β1 − α2), pa koriste²i
tranzitivnost relacije < iz (11) dobijamo da je a + c < b + c.

Mno�eǌe u skupu R

Definicija 5. Za date brojeve a, b ∈ R, a, b > 0, broj x ∈ R je ǌihov
proizvod i oznaqava se x = a · b ako za proizvoǉne racionalne brojeve α1, α2,
β1, β2 iz 0 < α1 6 a 6 α2 i 0 < β1 6 b 6 β2 sledi α1β1 6 x 6 α2β2. Ako su a, b
proizvoǉnog znaka, definicija proizvoda se uvodi na poznati naqin.

Teorema 6. Za bilo koja dva realna broja a, b, broj x opisan u definici-
ji 5 postoji i jedinstveno je odre�en. Sem toga, ako su brojevi a, b racional-
ni, onda se kao proizvod dobija broj a · b, shva�en kao proizvod racionalnih
brojeva.

Dokaz. Dokaza²emo egzistenciju i jedinstvenost proizvoda pozitivnih re-
alnih brojeva a i b. Fiksirajmo proizvoǉne racionalne brojeve α2 i β2 za koje
je a 6 α2 i b 6 β2 i oznaqimo sa M ve²i od ǌih. Posmatrajmo sve mogu²e
racionalne brojeve α1 i β1 za koje je 0 < α1 6 a i 0 < β1 6 b. Lako je proveriti
da je skup svih tako dobijenih proizvoda α1β1 ograniqen odozgo (pri qemu je
α2β2 jedna ǌegova majoranta). Oznaqimo sa x supremum tog skupa (koji postoji
na osnovu teoreme 3); on zadovoǉava uslov α1β1 6 x 6 α2β2, pa prema definiciji
predstavǉa proizvod brojeva a i b.

Pretpostavimo da postoje dva broja, x i y koji zadovoǉavaju nejednakosti

(12) α1β1 6 x 6 α2β2 i α1β1 6 y 6 α2β2

za sve mogu²e racionalne brojeve α1, α2, β1, β2 za koje je

(13) 0 < α1 6 a 6 α2 6 M i 0 < β1 6 b 6 β2 6 M.
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Fiksiraju²i proizvoǉno ε ∈ Q+ i koriste²i lemu 2, na±imo za date brojeve a i
b takve racionalne brojeve α1, α2, β1, β2 koji zadovoǉavaju uslove (13) i za koje
va¼i α2 − α1 < ε/(2M) i β2 − β1 < ε/(2M). Tada se zbog uslova (12) oba broja
x i y nalaze izme±u racionalnih brojeva α1β1 i α2β2, pri qemu za razliku tih
granica va¼i

α2β2 − α1β1 = α2(β2 − β1) + β1(α2 − α1) < M · ε

2M
·M · ε

2M
= ε.

Na osnovu leme 4 sledi da je x = y.
Posledǌi deo tvr±eǌa teoreme dokazuje se sliqno kao u teoremi 4.
Bez dokaza navodimo i slede²e tvr±eǌe.

Teorema 7. Za mno�eǌe realnih brojeva va�e svojstva (2.1)–(2.5) i
(3.6) iz spiska aksioma realnih brojeva (odeǉak 2, str. 2 i 3).

Dakle, (R,+, ·, 6) je ure±eno poǉe i (Q, +, ·, 6) je ǌegovo potpoǉe, s tim da
poǉe (R,+, ·, 6) zadovoǉava dodatnu osobinu (4), pa je ono potpuno.

Definicija eksponencijalne funkcije
U ve²ini u­benika za drugi razred sredǌih xkola, pri definisaǌu ekspo-

nencijalne funkcije (s realnim eksponentom), uglavnom se pre²utkuje da se radi
o sasvim netrivijalnom koraku. Najqex²e se sugerixe da je dovoǉno ,,samo“ pro-
du¼iti definiciju izraza ax koji je bio odre±en za dato a > 0 i x ∈ Q na ira-
cionalne eksponente, uz vizuelnu predstavu ,,popuǌavaǌa“ odgovaraju²e krive
(v. slike 7 i 8). Pitaǌa tipa ,,qemu je jednako 2

√
2?“ uglavnom se ne postavǉaju,

a jox maǌe se daje odgovor.

y

x0

(x,2 ),x
x

�Q

Slika 7

Naravno, pomenutu definiciju nije ni mogu²e dati bez korix²eǌa svojst-
va neprekidnosti skupa realnih brojeva (bilo da je ono uzeto kao aksioma ili
je dokazano na neki naqin). Isto va¼i i za kǉuqno svojstvo tako definisane
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Slika 8

funkcije – da ona preslikava skup R na skup R+ – xto, uz injektivnost koja se
lako dokazuje, omogu²ava korektnu definiciju logaritma.

Ovde ²emo pokazati kako se odgovaraju²i postupak sprovodi u sluqaju defi-
nisaǌa skupa R na naqin koji sada razmatramo.

Definicija 6. Neka su a i b dati realni brojevi, pri qemu je a > 1
(sluqaj 0 < a < 1 se razmatra analogno). Ka¼emo da je broj c stepen broja a
brojem b, i pixemo c = ab, ako za svaka dva racionalna broja β1, β2, takva da je
β1 6 b 6 β2, va¼i aβ1 6 c 6 aβ2 .

Teorema 8. Za svaka dva realna broja a, b, a > 1, broj c opisan u defini-
ciji 6 postoji i jednoznaqno je odre�en. Pri tome, ako je b ∈ Q, broj c je
jednak vrednosti izraza ab, shva�enog kao stepen broja a s racionalnim iz-
lo�iocem.

Dokaz. Skup A = { aβ1 | β1 ∈ Q, β1 6 b } je neprazan i ograniqen odozgo
bilo kojim brojem oblika aβ2 za β2 ∈ Q, b 6 β2. Zato postoji c = sup A; za ǌega,
po konstrukciji, va¼i aβ1 6 c 6 aβ2 za sve β1, β2 ∈ Q za koje je β1 6 b 6 β2,
qime je egzistencija broja c dokazana.

Za dokaz jedinstvenosti broja c s opisanim svojstvima iskoristi²emo poz-
natu Bernulijevu nejednakost zapisanu u obliku

(14) dn > 1 + n(d− 1), d > 1, n ∈ N, n > 1,

iz koje, stavǉaju²i d = a1/n, dobijamo da va¼i

(15) a1/n − 1 <
a− 1

n
.

Neka je n ∈ N proizvoǉno. Na osnovu leme 2, racionalni brojevi β1 i β2 se mogu
izabrati tako da bude β1 6 b 6 β2 i β2 − β1 < 1/n. Tada iz (15) dobijamo da
va¼i

(16) aβ2 − aβ1 = aβ1(aβ2−β1 − 1) < aβ1(a1/n − 1) < aβ1 · a− 1
n

.
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Izaberimo proivoǉno β2 > b (za koje je svakako β1 6 β2) i prirodan broj n za

koji je n >
aβ2(a− 1)

ε
, gde je ε ∈ Q+ proizvoǉno. Tada iz (16) dobijamo da je

aβ2 − aβ1 < ε. No, onda iz leme 4 sledi da mo¼e postojati samo jedan broj c koji
zadovoǉava tra¼ene uslove.

Posledǌe tvr±eǌe se dokazuje jednostavno.

Teorema 9. Za dato a ∈ R, a > 0, a 6= 1, funkcija f : R → R+, data sa
f(x) = ax, jeste bijekcija.

Dokaz. Iz osnovnih svojstava funkcije f za a > 1 (koja se lako prenose
sa sluqaja funkcije s racionalnim izlo¼icem), funkcija f(x) = ax je strogo
rastu²a, dakle 1–1. Doka¼imo da je ona na.

Neka je c ∈ R+ proizvoǉno. Uoqimo skup A = {β1 ∈ Q | aβ1 < c} – on
je neprazan i ograniqen odozgo. Zaista, na osnovu nejednakosti (14) za d = a,
biraju²i prirodan broj n za koji je n >

c

a− 1
dobijamo da je an > 1 + c > c, pa

je n majoranta skupa A; sliqno, biraju²i n ∈ N tako da je n >
1

c(a− 1)
dobijamo

da je a−n < c, pa je −n ∈ A. Oznaqimo b = sup A. Tada broj ab zadovoǉava
uslov aβ1 < ab < aβ2 za sve β1, β2 ∈ Q za koje je aβ1 < c < aβ2 . Kako je prema
prethodnoj teoremi broj c s takvom osobinom jednoznaqno odre±en, to mora biti
ab = c.

Kao xto znamo, broj b odre±en u dokazu prethodne teoreme zove se logaritam
broja c za osnovu a i oznaqava b = loga c.

5. Realni brojevi kao Dedekindovi preseci

Nemaqki matematiqar Dedekind (R. Dedekind, 1831–1916) bio je prvi koji
je, 1872. godine, dao rigoroznu definiciju realnih brojeva. Mada ona na prvi
pogled deluje apstraktno, osnovna ideja te definicije je sasvim jednostavna i
bazira se na zahtevu da izme±u skupa realnih brojeva i skupa taqaka neke prave
treba da postoji bijekcija. Ili, drugim reqima, da se formalno algebarski
izrazi zahtev da je prava neprekidna linija.

Poqnimo izlagaǌe slede²im citatom iz osnovnog Dedekindovog qlanka [8]
(v. srpski prevod u [9]).

. . . svaka taqka prave deli tu pravu na dva dela, takva da svaka
taqka jednog dela le¼i levo od bilo koje taqke drugog dela. Smatram da
se suxtina neprekidnosti sastoji u obratu te qiǌenice, tj. u slede²em
principu:

Ako su sve taqke jedne prave podeǉene u dve klase tako da svaka
taqka jedne klase le¼i levo od bilo koje taqke druge klase, tada postoji
jedna i samo jedna taqka koja vrxi tu podelu.

Mada su se kasnije pojavili mnogi drugi pristupi definisaǌu skupa R,
Dedekindov naqin je dugo ostao jedan od najzastupǉenijih me±u konstrukcijskim
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pristupima, kako u praktiqnoj nastavi, tako i u u­benicima. U ovom odeǉku
prikaza²emo glavne korake pomenutog pristupa, uglavnom prate²i klasiqni qla-
nak [8] i neke dopune iz u­benika [2].

Definicija 7. Neka su A1 i A2 neprazni podskupovi skupa racionalnih
brojeva Q, takvi da va¼i: 1◦ A1 ∪ A2 = Q i 2◦ (∀a1 ∈ A1)(∀a2 ∈ A2) a1 < a2.
Tada ka¼emo da je par (A1, A2) presek1 u skupu Q.

Primetimo da iz uslova 2◦ sledi da je A1 ∩A2 = ∅. Skup A1 ²emo nazivati
doǌom, a skup A2 gorǌom klasom preseka (A1, A2). Primetimo da ako je a1 ∈ A1

i a′1 < a1, tada je i a′1 ∈ A1; dualno va¼i za gorǌu klasu.
Formalno-logiqki gledano, za dati presek (A1, A2), postoje slede²e qetiri

mogu²nosti:
1◦ doǌa klasa A1 ima svoj najve²i element r, a gorǌa klasa A2 nema najmaǌi

element;
2◦ doǌa klasa A1 nema najve²i element, a gorǌa klasa A2 ima svoj najmaǌi

element r;
3◦ doǌa klasa A1 ima svoj najve²i element, a gorǌa klasa A2 ima svoj naj-

maǌi element;
4◦ niti doǌa klasa A1 ima najve²i element, niti gorǌa klasa A2 ima naj-

maǌi element.
Odmah je, me±utim, jasno da je sluqaj 3◦ nemogu² – zaista, ako bi bilo

r1 = max A1 i r2 = min A2, (racionalan) broj 1
2 (r1 + r2) ne bi mogao da pripada

nijednoj od ovih klasa, suprotno uslovu A1 ∪A2 = Q.
Ali, sluqaj 4◦ je mogu². Dovoǉno je izabrati A2 = {x ∈ Q+ | x2 > 2} i

A1 = Q \ A2, i standardnim argumentom (v. dokaz teoreme 1) pokazuje se da je
(A1, A2) presek koji zadovoǉava uslov 4◦.

U sluqajevima 1◦, odnosno 2◦, kaza²emo da navedeni broj r realizuje presek
(A1, A2), ili da presek (A1, A2) odre�uje broj r. U oba sluqaja va¼i slede²e:
svaki racionalan broj a1 za koji je a1 < r pripada doǌoj klasi, a svaki raciona-
lan broj a2 za koji je a2 > r pripada gorǌoj klasi. Sam broj r mo¼e pripadati
bilo kojoj od te dve klase; da bismo pojednostavili neke formulacije, pret-
postavǉa²emo (ako se ne zahteva izriqito drugaqije) da broj r pripada gorǌoj
klasi (i, dakle, predstavǉa ǌen najmaǌi element).

Definicija 8. Skup svih mogu²ih preseka (A1, A2), formiranih u skupu
racionalnih brojeva, zva²emo skup realnih brojeva R. U gorepomenutim sluqaju
4◦, taj presek zva²emo iracionalnim brojem.

Upore�ivaǌe realnih brojeva

Definicija 9. Neka su α = (A1, A2) i β = (B1, B2) dva realna broja.
Ka¼emo da je broj α ve�i od broja β i pixemo α > β ako je A1 ⊃ B1 i A1 6= B1.
Ako va¼i α > β ili α = β, onda pixemo α > β.

1Termin ,,presek“, kao prevod nemaqkog “Schnitt”, odnosno engleskog “cut”, kod nas se ustalio.
Mo¼da bi duhu originala vixe odgovarao termin ,,rez“.
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Primetimo da je dati uslov A1 ⊃ B1 ekvivalentan uslovu B2 ⊃ A2. Lako
je videti da je, u sluqaju da su brojevi α i β racionalni, nejednakost α > β,
shva²ena u smislu prethodne definicije, ekvivalentna uslovu α > β u smislu
relacije poretka u Q.

Lema 5. Relacija > na skupu R je relacija totalnog poretka, tj. zadovoǉena
su svojstva (3.1)–(3.4) iz spiska akisoma realnih brojeva (str. 3).

Dokaz. Dokaza²emo svojstva (3.3) i (3.4).
Doka¼imo da iz α > β i β > γ sledi α > γ (ostali sluqajevi se lako

proveravaju). Neka je α = (A1, A2), β = (B1, B2) i γ = (C1, C2). Iz pretpostavki
α > β i β > γ sledi da je A1 ⊃ B1 i B1 ⊃ C1, kao i A1 6= B1 i B1 6= C1, odakle
je A1 ⊃ C1 i A1 6= C1, dakle α > γ.

Neka su sada dati realni brojevi α = (A1, A2) i β = (B1, B2). Pretpostavi-
mo da ne va¼i α = β (pa je A1 6= B1). Ako je A1 ⊃ B1, onda je α > β; ako to
nije sluqaj, onda postoji b0 ∈ B1 za koji b0 /∈ A1, tj. b0 ∈ A2. No, onda za svako
a ∈ A1 va¼i a < b0, dakle a ∈ B1. Znaqi da je B1 ⊃ A1, pa je β > α.

Lema 6. Za proizvoǉne realne brojeve α i β za koje je α > β, postoji
bar jedan racionalan broj r (a samim tim i beskonaqno mnogo ǌih) za koji
je α > r > β.

Dokaz. Neka je α = (A1, A2) i β = (B1, B2). Zbog α > β va¼i A1 ⊃ B1

i A1 6= B1. Sledi da postoji racionalan broj r ∈ A1, takav da r /∈ B1, tj.
r ∈ B2. Za taj broj va¼i α > r > β (jednakost bi mogla da va¼i ako je broj β
racionalan). Ali, kako, prema dogovoru, klasa A1 ne sadr¼i najve²i element,
to se jednakost mo¼e iskǉuqiti (u sluqaju potrebe se r mo¼e pove²ati).

Neprekidnost skupa R
Podsetimo se da smo u sluqaju formiraǌa preseka u skupu racionalnih

brojeva mogli kao rezultat dobiti preseke triju vrsta – postojala je mogu²nost
da niti doǌa klasa ima maksimum, niti gorǌa klasa ima minimum. Kǉuqna nova
osobina skupa R jeste da se tako nexto ne mo¼e dogoditi ako formiramo presek
(po pravilima kao u definiciji 7) u skupu R. Drugim reqima, novi skup R nema
,,rupa“ kakve je imao skup Q (videti i citat iz Dedekindovog qlanka naveden u
poqetku ovog odeǉka). Naredna Dedekindova teorema je ekvivalentna teoremi 3
o egzisteniciji supremuma odozgo ograniqenog skupa.

Teorema 10. (Dedekind) Za proizvoǉan presek (A1,A2) u skupu R ili
doǌa klasa ima najve�i element ili gorǌa klasa ima najmaǌi element.

Dokaz. Oznaqimo A1 = A1∩Q i A2 = Q\A1. Jasno je da je (A1, A2) presek u
skupu Q – oznaqimo realan broj koji on odre±uje sa γ. Taj broj mora pripadati
jednoj od klasa A1 ili A2; neka npr. γ ∈ A1. Doka¼imo da je tada γ = maxA1.
Ako to ne bi bio sluqaj, postojao bi broj α0 ∈ A1 takav da je α0 > γ. Prema
lemi 6 tada postoji r ∈ Q takav da je α0 > r > γ. Kako je r < α0, to r ∈ A1,
pa i r ∈ A1. Dobili smo kontradikciju: racionalan broj r koji pripada doǌoj
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klasi preseka koji odre±uje broj γ ve²i je od samog tog broja! Time je tvr±eǌe
dokazano.

Operacije u skupu R
Ilustracije radi, navodimo samo definiciju sabiraǌa u skupu R i dokaz

qiǌenice da ona predstavǉa ,,produ¼eǌe“ odgovaraju²e operacije u skupu Q.
Dokaz osobina te operacije, kao i definiciju i dokaze svojstava operacije mno-
¼eǌa izostavǉamo (videti, npr, kǌigu [2]).

Definicija 10. Neka su α = (A1, A2) i β = (B1, B2) realni brojevi dati
presecima. ǋihov zbir je broj γ = (C1, C2), gde racionalan broj c1 pripada
doǌoj klasi C1 ako i samo ako postoje a1 ∈ A1 i b1 ∈ B1 tako da je a1 + b1 > c1.

Lema 7. Ako su α i β racionalni brojevi, onda se ǌihov zbir γ formiran
na napred opisani naqin poklapa sa zbirom α + β izraqunatim po pravilima
sabiraǌa u skupu Q.

Dokaz. Za svako c1 ∈ C1 va¼i c1 6 α + β jer je a1 6 α, b1 6 β, pa je
zato a1 + b1 6 α + β. Ako bi u klasi C2 postojao broj c2 < α + β, tj. ako je
α + β = c2 + p, gde je p ∈ Q+, tada bismo imali

c2 = (a− 1
2p) + (β − 1

2p),

xto bi bilo u suprotnosti s definicijom broja c2, jer je α − 1
2p broj iz A1, a

β − 1
2p broj iz B1; dakle, svaki broj c2 sadr¼an u C2 ve²i je ili jednak α + β.

Time je pokazano da presek (C1, C2) odre±uje zbir α + β.

Primena svojstva neprekidnosti u Matematiqkoj analizi
Kao xto znamo, svojstvo neprekidnosti skupa R realnih brojeva obezbe±uje

da u tom skupu va¼e neke od najva¼nijih teorema Matematiqke analize. Kao ilus-
traciju, poka¼imo ovde, slêde²i Dedekindov qlanak [8] (ali prilago±avaju²i
termine i oznake savremenim), kako se ono koristi u dokazu teoreme o egzisten-
ciji limesa monotone i ograniqene funkcije. Dobro poznat specijalan sluqaj
ovog tvr±eǌa je teorema 2 o postojaǌu limesa monotonog i ograniqenog niza
realnih brojeva.

Teorema 11. Ako je f : D → R, D ⊂ R, strogo rastu�a i odozgo
ograniqena funkcija i ako je s = sup D taqka nagomilavaǌa skupa D, on-
da postoji konaqan limx→s f(x).

Dokaz. Zbog ograniqenosti funkcije f , postoji jedan, pa samim tim i besko-
naqno mnogo brojeva α2 takvih da je f(x) < α2 za sve x ∈ D – oznaqimo sa A2 skup
svih takvih brojeva α2 i A1 = R \ A2. Svaki od brojeva α1 ∈ A1 ima svojstvo
da, za svako ε > 0, postoji δ > 0 tako da je f(x) > α1 qim je s− δ < x < s. Znaqi
da je svaki broj α1 maǌi od bilo kog broja α2 ∈ A2; prema teoremi 10 sledi da
postoji broj α koji je ili najve²i element klase A1 ili najmaǌi element klase
A2. Prvo se ne mo¼e dogoditi jer je funkcija f(x) strogo rastu²a; dakle je
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α = minA2. Koji god broj α1 ∈ A1 da izaberemo, ima²emo da je α1 < f(x) < α
kad je x dovoǉno blizu s, xto znaqi da je limx→s f(x) = α.
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