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UPARIVAǋE U KOMBINATORNIM DOKAZIMA

1. Uvod

Jednom davno kraǉ zemǉe zvane Kombinatorika1 pozvao je sve plemi²e i
plemkiǌe da prisustvuju balu povodom 18. ro±endana svoje k²erke. Kada su
se svi okupili u ǌegovom ogromnom dvoru, kraǉ je naredio da se odredi da
li u kraǉevstvu ima vixe plemi²a ili plemkiǌa. Posle nekoliko neuspelih
pokuxaja da izbroje koliko ima muxkaraca i koliko ima ¼ena, kraǉev savetnik
se dosetio da puste muziku i da kraǉ naredi svakome ko mo¼e da na±e slobodnu
osobu suprotnog pola, da sa ǌom zaplexe. Posle nekog vremena na dvoru ²e biti
parovi koji plexu, i ukoliko postoji muxkarac koji ne plexe, onda ima vixe
plemi²a. U suprotnom na dvoru ima vixe plemkiǌa.

Ova ideja uparivaǌa qesto se koristi u kombinatorici kada ¼elimo da
saznamo koji skup ima vixe elemenata ili kada ¼elimo problem da prevedemo na
neki drugi problem koji je lakxe opisati i shvatiti. U slede²im poglavǉima
bavi²emo se ve²inom primenama ove ideje, ali pre toga da se podsetimo nekih
osnovnih qiǌenica koje ²emo koristiti u tim primerima.
(i) Neka su A i B konaqni skupovi. Ukoliko postoji 1-1 funkcija f : A → B,

tada je broj elemenata skupa A maǌi ili jednak broju elemenata skupa B,
tj. |A| 6 |B|.

(ii) Neka su A i B konaqni skupovi. Ukoliko postoji bijekcija f : A → B, tada
je broj elemenata skupa A jednak broju elemenata skupa B, tj. |A| = |B|.

(iii) Funkcija f : A → B je bijekcija ako i samo ako ima inverz, tj. ako postoji
funkcija g : B → A tako da za svaki element a ∈ A va¼i g(f(a)) = a i za
svaki b ∈ B va¼i f(g(b)) = b.

2. Osnovni primeri

Poqe²emo jednim jednostavnim primerom, qiji rezultat ²emo qesto koristi-
ti u daǉem tekstu.

Primer 2.1. Koliko ima binarnih nizova du¼ine n, gde je n proizvoǉan
prirodan broj? Binarni niz je niz u kome se pojavǉuju samo nule i jedinice.
Opxtije, koliko ima nizova du¼ine n nad azbukom (skupom) od k slova?

1 Req kombinatorika se prvi put pojavila u Lajbnicovom delu Dissertatio de Arte Combi-
natoria.
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Rexeǌe. Niz du¼ine n ²emo predstavǉati kao ure±enu n-torku:
(

, , , . . . , , ,︸ ︷︷ ︸
n mesta

)
.

Na svakom od n mesta mo¼emo napisati ili nulu ili jedinicu, tako da je broj
binarnih nizova du¼ine n jednak 2n. Koriste²i ovu ideju, lako se vidi da je
odgovor na opxtije pitaǌe postavǉeno u zadatku upravo kn. 4

Primer 2.2. Neka je A konaqan skup, |A| = n. Dokazati da je broj svih
podskupova skupa A jednak 2n.

Primedba. Po analogiji sa ovom rezultatom, partitivni skup skupa A se
u kombinatorici qesto oznaqava sa 2A.

Rexeǌe. Ukoliko je n = 0, jedini podskup praznog skupa je prazan skup, pa
tvr±eǌe va¼i jer je 20 = 1.

Ako je n > 1, primetimo da je 2n broj binarnih nizova du¼ine n, tako da
²emo konstruisati bijekciju izme±u skupa svih ovakvih nizova i partitivnog
skupa skupa A. Radi lakxeg oznaqavaǌa, neka je A = {1, 2, . . . , n} = [n].

Ako je b = (b1, b2, b3, . . . , bn) proizvoǉan binarni niz du¼ine n, konstrui-
ximo skup Sb ⊆ A na slede²i naqin: za i ∈ [n], i ∈ Sb ako i samo ako je bi = 1.
Direktno se vidi da je preslikavaǌe f : b 7−→ Sb tra¼ena bijekcija. 4

Primer 2.3. Neka je A neprazan konaqan skup, |A| = n. Dokazati da je
broj svih podskupova skupa A koji imaju neparan broj elemenata jednak 2n−1.
Drugim reqima, broj podskupova skupa A sa parnim brojem elemenata jednak je
broju podskupova sa neparnim brojem elemenata, pri qemu je prazan skup skup sa
parnim brojem elemenata.

Rexeǌe. Oznaqimo sa F familiju svih podskupova skupa A = [n] koji imaju
neparan broj elemenata i konstruiximo preslikavaǌe

f : 2[n−1] → F ([0] = ∅), f(A) =
{

A, |A| je neparan broj;
A ∪ {n}, |A| je paran broj.

Lako se proveri da je f dobro definisano preslikavaǌe koje je bijekcija. Time
smo dokazali tvr±eǌe, tj. da je |F| = 2n−1. 4

Primer 2.4. Dat je skup S koji ima n elemenata. Odrediti broj ure±enih
parova (A,B), gde su A,B ⊆ S, tako da va¼i A ⊆ B. Xta se u primeru meǌa
ako zahtevamo jox i da je A 6= B?

Rexeǌe. Kao i u prethodnim primerima, ra-
di lakxeg oznaqavaǌa, neka je S = [n]. Defini-
ximo funkciju f koja par skupova (A,B) za koji
va¼e uslovi primera preslikava u niz du¼ine n
nad skupom [3], b = (b1, b2, b3, . . . , bn), na slede²i
naqin: za svaki s ∈ [n],

S = [n]

BA

Sl. 1
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(1) ako s ∈ S \ (A ∪B), onda bs = 1;
(2) ako s ∈ B \A, onda bs = 2;
(3) ako s ∈ A, onda bs = 3.

Kako su skupovi A, B\A, S\(A∪B) disjunktni u parovima i unija im je ceo skup
S, f je dobro definisana funkcija. Doka¼imo da je f bijekcija tako xto ²emo
konstruisati inverzno preslikavaǌe, da bismo ilustrovali primenu qiǌenice
(iii).

Neka je c = (c1, c2, c3, . . . , cn) proizvoǉan niz du¼ine n nad skupom [3]. Neka
je A = {s ∈ [n] | cs = 3}, B = A ∪ {s ∈ [n] | cs = 2} i definiximo funkciju g,
g : c 7→ (A,B). Lako se proverava da je f ◦ g = id i g ◦ f = id na odgovaraju²im
skupovima. Dobijamo da je rexeǌe zadatka upravo broj svih nizova du¼ine n
nad skupom [3], tj. 3n.

Ukoliko zahtevamo da je A 6= B, onda od 3n moramo da oduzmemo sve sluqajeve
kada je A = B, tj. broj svih nizova du¼ine n nad skupom {1, 3}. Dakle, rexeǌe
primera, kada dodamo uslov da skup A mora biti pravi podskup skupa B, jeste
3n − 2n. 4

Primer 2.5. Dat je skup S koji ima n elemenata. Na koliko razliqitih na-
qina se mo¼e izabrati par (A,B) podskupova skupa S tako da je ǌihova unija S?
Xta se u zadatku meǌa kada, umesto da tra¼imo broj ovakvih parova (A,B),
tra¼imo broj skupova {A, B} qija je unija ceo skup S?

Rexeǌe. Konstruiximo funkciju f koja par skupova (A,B), takvih da S =
[n] = A ∪ B, preslikava u niz b = (b1, b2, b3, . . . , bn) du¼ine n nad skupom [3] na
slede²i naqin: za svaki s ∈ [n],

(1) ako s ∈ A \B, onda bs = 1;
(2) ako s ∈ B \A, onda bs = 2;
(3) ako s ∈ A ∩B, onda bs = 3.

Oznaqimo sa F familiju svih parova skupova (A, B), takvih da je A ∪ B = [n].
Kao i u prethodnom primeru, lako se proverava da je f bijekcija izme±u F i
svih nizova du¼ine n nad skupom [3], tj. odgovor na prvo pitaǌe je 3n.

Da bismo dali odgovor na drugo pitaǌe iz primera, primetimo da nam ovde
redosled izbora skupova nije va¼an. Iskoristi²emo prvi deo primera. Ozna-
qimo sa G familiju svih skupova {A,B}, takvih da je A ∪ B = [n], i neka je g
funkcija, g : F → G, g : (A,B) 7→ {A, B}. Ako je A 6= B, tada |g−1({A,B})| = 2,
a ako je A = B, onda, zbog uslova da je A ∪B = [n], mora biti A = [n]. Dakle,

|G| = 1
2

(|F|+ 1) =
1
2

(3n + 1) . 4
Primedba. Ideju sa kraja prethodnog zadatka mo¼emo formalnije da zapi-

xemo. Naime, ako su A i B konaqni skupovi izme±u kojih postoji NA funkcija
f : A → B takva da je za neki prirodan broj m i za svaki element b ∈ B,
|f−1(b)| = m, onda je |A| = m · |B|.

Dokaz. Tvr±eǌe sledi iz qiǌenice da skupovi f−1(b), b ∈ B, qine particiju
skupa A na podskupove od kojih svaki ima taqno m elemenata. ¤
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3. Binomni koeficijenti

Da bismo nastavili sa primerima koji koriste ideju uparivaǌa, moramo
prvo da se podsetimo nekih va¼nih stvari vezanih za binomne koeficijente i
da se podsetimo nekih identiteta, koje ²emo dokazivati kombinatorno, umesto
davaǌa standardnih algebarskih dokaza. Tako±e, da bismo ilustrovali lepotu
kombinatornog dokaza, uradi²emo vixe primera nego xto nam je potrebno za daǉi
tekst.

Definicija. Neka je n prirodan, a k nenegativan ceo broj. Definiximo

binomni koeficijent
(

n

k

)
kao broj svih k-toqlanih podskupova skupa [n].

Po analogiji sa oznakom za binomni koeficijent, sa
(

[n]
k

)
²emo oznaqavati

skup svih k-toqlanih podskupova skupa [n].

Lema 3.1. (a)
(

n

0

)
=

(
n

n

)
= 1;

(b) Ako je k > n,
(

n

k

)
= 0;

(v) Za svako 0 6 k 6 n va¼i
(

n

k

)
=

(
n

n− k

)
.

Dokaz. Delovi (a) i (b) slede direktno iz definicije. Da bismo dokazali
svojstvo (v), primetimo da je funkcija f koja slika neki k-toqlani podskup A ⊆
[n] u ǌegov komplement [n] \A zapravo bijekcija izme±u

(
[n]
k

)
i

(
[n]

n− k

)
. ¤

Posledica. Neka je n prirodan broj. Tada va¼i:

(a)
n∑

k=0

(
n

k

)
= 2n, (b)

bn/2c∑
k=0

(
n

2k

)
= 2n−1.

Dokaz. Sledi iz definicije binomnih koeficijenata i primera 2.2 i 2.3. ¤
Lema 3.2. Za prirodan broj n i nenegativan ceo broj k va¼i(

n

k

)
+

(
n

k + 1

)
=

(
n + 1
k + 1

)
.

Dokaz. Dokaza²emo da su leva i desna strana jednakosti iste tako xto ²emo
pokazati da oba predstavǉaju broj elemenata istog skupa.

Desna strana: broj (k + 1)-toqlanih podskupova skupa [n + 1].
Leva strana: ako je S ⊆ [n + 1], takav da je |S| = k + 1, tada:

• ako n + 1 /∈ S, onda je S ⊆ [n], a takvih podskupova ima
(

n
k+1

)
,

• ako n + 1 ∈ S, onda S \ {n + 1} ⊆ [n], a takvih podskupova ima
(
n
k

)
.

Kako svaki podskup ili sadr¼i ili ne sadr¼i neki element, dobili smo da je
leva strana jednakosti jednaka desnoj. ¤

Lema 3.3. Neka su k i n prirodni brojevi. Tada va¼i(
k

k

)
+

(
k + 1

k

)
+

(
k + 2

k

)
+ · · ·+

(
n

k

)
=

(
n + 1
k + 1

)
.
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Dokaz. Desna strana: broj svih (k + 1)-toqlanih podskupova skupa [n + 1].
Leva strana. Neka je S ⊆ [n + 1], takav da je |S| = k + 1. Tada je maksimum

skupa S, maxS, element skupa {k + 1, k + 2, . . . , n}. Ako je j = max S, onda
je S \ {j} neki k-toqlani poskup skupa [j − 1], a takvih podskupova ima

(
j−1

k

)
.

Dobijamo
(

n + 1
k + 1

)
=

n+1∑

j=k+1

∣∣∣∣
{

S ∈
(

[n + 1]
k + 1

) ∣∣∣∣ max S = j

}∣∣∣∣ =
n∑

i=k

(
i

k

)
. ¤

Za kraj ovog poglavǉa dokaza²emo jedan te¼i identitet, za koji svakako nije
nimalo jednostavno dati algebarski dokaz.

Primer 3.1. Neka je n prirodan broj i 0 6 k 6 n− 1 ceo broj. Tada va¼i
k∑

j=0

(
n

j

)
=

k∑
j=0

(
n− 1− j

k − j

)
2j .

Rexeǌe. Leva strana: broj svih podskupova skupa [n] koji imaju najvixe k
elemenata.

Desna strana. Ako je S podskup od [n] sa najvixe k elemenata, onda [n] \ S
mora da ima bar ` = n− k elemenata, tj.

[n] \ S = {a1, a2, . . . , a`, . . . , as}, 1 6 a1 < · · · < as 6 n, s > `.

Prvo primetimo da a` mo¼e biti bilo koji element skupa B` = {`, ` + 1, . . . , n}.
Ako fiksiramo element f ∈ B`, pitamo se koliko ima skupova S ⊆ [n] sa najvixe
k elemenata tako da je `-ti element po veliqini u skupu [n]\S bax f , tj. tako da
je a` = f , koriste²i oznake odozgo. Kako f mora biti `-ti element po veliqini,
iz skupa [f − 1] moramo izabrati ` − 1 element na

(
f−1
`−1

)
naqina. Xto se tiqe

elemenata ve²ih od f , oni mogu ili da pripadaju ili da ne pripadaju skupu [n]\S,
jer qim smo izabrali ` elemenata za skup [n]\S, imamo |S| = n−|[n]\S| 6 n−` =
k. Zakǉuqujemo da skup ([n] \ S) ∩ {f + 1, f + 2, . . . , n} mo¼e biti proizvoǉan
podskup skupa Bf+1, a ǌih ima 2n−f . Konaqno, skupova S ⊆ [n], |S| 6 k, tako da
je `-ti element po veliqini u skupu [n] \ S jednak f ima

(
f−1
`−1

) · 2n−f . Sledi da
je broj svih podskupova sa najvixe k elemenata jednak

n∑
f=`

(
f − 1
`− 1

)
· 2n−f =

k∑
j=0

(
` + k − j − 1

`− 1

)
· 2n−(`+k−j)

=
k∑

j=0

(
n− j − 1
n− k − 1

)
· 2j =

k∑
j=0

(
n− j − 1

k − j

)
· 2j .

Ovim smo pokazali da i leva i desna strana jednakosti predstavǉaju broj ele-
menata istog skupa, tj. dati izrazi su me±usobno jednaki. 4

4. Put po rexetki

Definicija. Sever-istok put po rexetki (S-I put) je putaǌa u Z2

koja koristi samo korake S = (0, 1) i I = (1, 0).



Uparivaǌe u kombinatornim dokazima 19

Primeri S-I puteva su dati na slici 2.

(0; 0) (0; 0)

(7; 4) (7; 4)

Sl. 2. Dva primera S-I puta od (0, 0) do (7, 4)

Primer 4.1. Neka su n i m proizvoǉni nenegativni celi brojevi. Koliko
ima S-I puteva od taqke (0, 0) do taqke (n,m)?

Rexeǌe. Lako se vidi da svaki S-I put od (0, 0) do (n,m) mora da ima
taqno n + m koraka, od kojih n na istok i m na sever. Svaki put je jedinstveno
odre±en izborom u kojim koracima idemo na istok. Kako od n+m koraka moramo

da izaberemo n, tra¼eni broj S-I puteva je
(

n + m

n

)
=

(
n + m

m

)
. 4

Primedba. Rezultat prethodnog primera smo mogli da doka¼emo koriste²i
svojstva binomnih koeficijenata. Naime, u taqku (n,m) se mo¼e do²i ili iz
taqke (n − 1,m) ili iz (n, m − 1), pa je broj S-I puteva (0, 0) → (n,m) jednak
zbiru broja S-I puteva (0, 0) → (n− 1,m) i (0, 0) → (n,m− 1). Kako va¼i

(
n + m− 1

n− 1

)
+

(
n + m− 1

n

)
=

(
n + m

n

)
,

dobili smo rezultat primera (videti sliku 3).

1

1

1

1

1

1 1 1 1 1

2 3 4 5 6 7

3 6 10 15 21 28

4 10 20 35 56 84

5 15 35 70 126 210

1 1

8 9

36 45

120 165

330 495

Sl. 3. Pored svakog qvora v napisan je broj S-I puteva

od (0, 0) → v. Ovo je verzija Paskalovog trougla.
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Primer 4.2. Neka je n neki prirodan broj. Koliko ima S-I puteva od
(0, 0) do (n, n) koji nemaju preseka sa otvorenom poluravni zadatom nejednaqinom
y > x?

y
=
x
+
1

(4; 5)

(1; 2)

Sl. 4. Dva loxa puta (0, 0) → (6, 6) i odgovaraju²i putevi (−1, 1) → (6, 6)

Rexeǌe. Nazovimo S-I put (0, 0) → (n, n) loxim ako ima presek sa datom
poluravni y > x. Kako znamo ukupan broj S-I puteva (0, 0) → (n, n), ostaje da
na±emo koliko ih ima koji su loxi. Da bismo to uradili, napravi²emo odre±enu
bijekciju. Naime, svaki lox put ima presek sa pravom y = x + 1. Neka je taqka
(i, i+1) prva takva preseqna taqka. Tada deo puta od (0, 0) do (i, i+1) preslikamo
simetriqno u odnosu na pravu y = x + 1, a ostatak puta ostavimo kakav je bio
(videti sliku 4).

Kako svaki lox put mora da preseqe pravu y = x+1, vidimo da na ovaj naqin
za svaki lox put konstruixemo taqno jedan put (−1, 1) → (n, n). Obratno, svaki
put (−1, 1) → (n, n) mora da preseqe pravu y = x + 1 jer su poqetna i krajǌa
taqka puta u razliqitim poluravnima odre±enim ovom pravom. Izaberemo prvu
taqku preseka, i deo od (−1, 1) do te taqke preslikamo simetriqno u odnosu na
y = x + 1. Na ovaj naqin dobijamo taqno jedan lox put (0, 0) → (n, n).

Drugim reqima, ova konstrukcija je bijekcija izme±u loxih puteva (0, 0) →
(n, n) i svih S-I puteva (−1, 1) → (n, n), kojih ima

(
2n

n+1

)
, isto kao puteva

(0, 0) → (n + 1, n− 1). Konaqno, rexeǌe zadatka je
(

2n

n

)
−

(
2n

n + 1

)
. 4

Definicija. Broj Cn =
(

2n

n

)
−

(
2n

n + 1

)
naziva se n-ti Katalanov2

broj.

Katalanovi brojevi su od velike va¼nosti u kombinatorici. Ovde ²emo
navesti samo neke od problema u kojima se pojavǉuju ovi brojevi.

2 Eugène Charles Catalan (1814–1894), belgijski matematiqar
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• Imamo n kopija broja 1 i n kopija broja −1. Na koliko naqina mo¼emo ove
brojeve pore±ati u niz s1, s2, s3, . . . , s2n, tako da za svako 1 6 j 6 2n va¼i∑j

i=1 si > 0?
• Koliko ima n-torki prirodnih brojeva (a1, a2, . . . , an) takvih da va¼i 1 6

a1 6 a2 6 · · · 6 an−1 6 an i ai 6 i, za svako i ∈ [n]?
• Dato je 2n razliqitih taqaka na horizontalnoj pravoj. Na koliko naqina

mo¼emo po dve taqke povezati lukovima iznad taqaka, tako da se nikoja dva
luka me±usobno ne seku? Ovo je potpuno isto kao da pitamo koliko ima
izraza sa n parova dobro uparenih zagrada.

• Problem rukovaǌa: 2n ǉudi sedi za okruglim stolom. Na koliko naqina
oni svi istovremeno mogu da se rukuju da drugom osobom koja je za stolom,
a da se niqije ruke ne ukrste?

• Broj planarnih drveta sa korenom i sa (n + 1)-nim temenom je Cn.

• Broj triangulacija konveksnog (n + 2)-tougla je Cn.

5. Takmiqarski zadaci

U ovom poglavǉu ²emo uraditi tri takmiqarska zadatka koji koriste ideju
uparivaǌa.

Primer 5.1. [Matematiqki vixeboj, Moskva, 2014]

U jednoj xkoli ima po 200 vrednih i 200 leǌih ±aka. Na novogodixǌu pro-
slavu Deda Mraz je doneo kesu sa 800 qokolada i ho²e da ih podeli ±acima
tako da svaki leǌi ±ak dobije najvixe po jednu qokoladu, a da svaki vredan ±ak
dobije paran broj qokolada, najmaǌe po 2. Direktor xkole je rexio da nagradi
vredne ±ake tako xto ²e da im podeli 600 mandarina, tako da svaki vredan ±ak
dobije najmaǌe po jednu. Ko od ǌih dvojice mo¼e na vixe naqina da distribuira
poklone i koliko puta vixe?

Rexeǌe. Doka¼imo da obojica imaju isti broj naqina da podele poklone.

Broj naqina da Deda Mraz podeli poklone jednak je broju ure±enih 400-
torki celih brojeva (l1, l2, . . . , l200, 2v1, 2v2, . . . , 2v200), pri qemu va¼i l1 + l2 +
· · ·+ l200 + 2v1 + 2v2 + · · ·+ 2v200 = 800 i za svako j ∈ [200], 0 6 lj 6 1, vj > 1.

Broj naqina da direktor podeli mandarine je broj ure±enih 200-torki pri-
rodnih brojeva (m1,m2, . . . , m200), za koje va¼i m1 + m2 + · · ·+ m200 = 600.

Svaki prirodan broj n na jedinstven naqin mo¼e da se napixe kao n = 2q+r,
gde je q neki nenegativan ceo broj, a r ∈ {0, 1} ostatak pri deǉeǌu broja n sa 2.
Lako se vidi da je funkcija f : n 7→ (q, r), f : N→ N0 × {0, 1} bijekcija.

Neka je m = (m1,m2, . . . , m200) proizvoǉna podela mandarina koja zadovo-
ǉava uslove i neka je, za svako j ∈ [200], f(mj + 1) = (vj , lj). Va¼no je da
primetimo da, kako je mj + 1 > 2, to je vj > 1. Na ovaj naqin od m dobijamo
vektor d = (l1, l2, . . . , l200, 2v1, 2v2, . . . , 2v200) koji je dobra raspodela poklona za
Deda Mraza: ono xto jedino jox treba dokazati je

l1 + l2 + · · ·+ l200 +2(v1 + · · ·+v200) = (m1 +1)+(m2 +1)+ · · ·+(m200 +1) = 800.
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Iz qiǌenice da je f bijekcija direktno sledi da je g : m 7→ d tako±e bijekcija,
tj. Deda Mraz i direktor imaju isti broj naqina da raspodele poklone. 4

Primer 5.2. [Ameriqka matematiqka olimpijada, 1996]

Neka je an broj binarnih nizova du¼ine n koji nemaju tri uzastopna qlana
jednaka 0, 1, 0. Neka je bn broj binarnih nizova iste du¼ine koji ne sadr¼e,
kao qetiri uzastopna qlana, nizove 0, 0, 1, 1 i 1, 1, 0, 0. Dokazati da je za svaki
prirodan broj n, bn+1 = 2an.

Rexeǌe. Neka je b = (b1, b2, b3, . . . , bn+1) proizvoǉan binarni niz du¼ine
n + 1 koji ne sadr¼i 0, 0, 1, 1 i 1, 1, 0, 0. Konstruiximo funkciju f ,

f(b) = (|b2 − b1|, |b3 − b2|, , . . . , |bn+1 − bn|).
Dobili smo binarni niz du¼ine n koji ne sadr¼i 0, 1, 0. Tako±e, za svaki niz
du¼ine n koji ne sadr¼i 0, 1, 0, a = (a1, a2, . . . , an), postoje taqno dva razliqita
niza b′, b′′ du¼ine n + 1 koji ne sadr¼e 0, 0, 1, 1 i 1, 1, 0, 0 i takvi da je f(b′) =
f(b′′) = a. Naime, to su nizovi

b′ = (1 = b′1, b
′
2, b

′
3, . . . , b

′
n+1), za i ∈ [n], b′i+1 =

{
b′i, ai = 0,

1− b′i, ai = 1,

b′′ = (0 = b′′1 , b′′2 , b′′3 , . . . , b′′n+1), za i ∈ [n], b′′i+1 =
{

b′′i , ai = 0,

1− b′′i , ai = 1.

Na osnovu primedbe na kraju poglavǉa 2, zakǉuqujemo ono xto se u zadatku i
tra¼i, da je bn+1 = 2an. 4

Primer 5.3. [Putnam takmiqeǌe, 2005]

Dat je skup S = {(a, b) | a ∈ [n], b ∈ [3]}. Topovski obilazak skupa S
je poligonalna linija sastavǉena od du¼i koje povezuju taqke p1, p2, p3, . . . , p3m

redom tako da je:

(i) pi ∈ S za svako i ∈ [3n];
(ii) rastojaǌe izme±u pi i pi+1 je jednako 1, za svako i ∈ [3n− 1];

(iii) za svaki element p skupa S postoji taqno jedno i, i ∈ [3n], tako da je pi = p.

Koliko ima topovskih obilazaka skupa S koji poqiǌu u (1, 1) i zavrxavaju se u
(n, 1)?

n = 2 n = 3 n = 3

Sl. 5. Svi tra¼eni topovski obilasci za n = 2, 3

Rexeǌe. Skup S mo¼emo da posmatramo kao tablu n × 3. Primetimo da,
kada stignemo u neko poǉe u doǌoj vrsti, iz ǌega ne mo¼emo da idemo na levo,
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samo na desno i na gore, jer obilazak ne sme da ima samopresecaǌa. Sliqno, iz
poǉa u gorǌoj vrsti mo¼emo samo na desno i na dole. Kako svaki obilazak koji
ode gore mora i da se vrati u doǌu vrstu, izdvoji²emo ona poǉa kada iz doǌe
vrste ili gorǌe vrste obilazak pre±e u sredǌu vrstu.

Formalno reqeno, ako je P neki topovski obilazak skupa S, i ako sa (i, k) →
(j, l) ∈ P oznaqimo da su parovi (i, k) i (j, l), tim redom, dva uzastopna qlana
obilaska P , neka je

σ(P ) = {i ∈ [n] | (i, 1) → (i, 2) ∈ P ili (i, 3) → (i, 2) ∈ P} .

σ(P1) = f2; 4; 5; 6g σ(P2) = f4; 6g

P1 P2

σ(P3) = f2; 3; 5; 6g

P3

Sl. 6. Obilasci P1, P2 i P3 i odgovaraju²i skupovi

Kako iz poǉa (n, 3) mo¼emo samo na dole, zakǉuqujemo da je uvek n ∈ σ(P ).
Primetimo da, u primerima nacrtanim na slikama 5 i 6, σ(P ) uvek sadr¼i pa-
ran broj elemenata. Doka¼imo da je to uvek sluqaj. Naime, neka je σ(P ) =
{a1, a2, . . . , ak}, pri qemu je a1 < a2 < · · · < ak. Ako, za neko i, ai odgovara delu
obilaska (ai, 1) → (ai, 2), onda ai+1 mora da odgovara delu (ai+1, 3) → (ai+1, 2).
Va¼i i obrnuto, ako za neko j, aj odgovara delu obilaska (aj , 3) → (aj , 2), onda
aj−1 mora da odgovara delu (aj−1, 1) → (aj−1, 2), videti sliku 7, jer inaqe ne
bismo mogli da obi±emo neka poǉa u doǌoj ili u gorǌoj vrsti. Tako±e, ako
(i, 1) → (i, 2) ∈ P i (j, 3) → (j, 2) ∈ P , onda mora biti i 6= j. Ovim smo dokazali
da je |σ(P )| uvek paran broj.

ai ai+1 aj−1 aj

Sl. 7. Ako bi ai i ai+1 oba odgovarali ,,peǌaǌu“ ili oba ,,silasku“,

odre±ena poǉa ne bismo mogli da obi±emo.

Da bismo dokazali da je σ bijekcija izme±u svih topovskih obilazaka skupa
S i svih poskupova A ⊂ [n] takvih da je n ∈ A i |A| ∈ 2N, konstruiximo inverzno
preslikavaǌe. Neka je A = {a1, a2, a3, . . . , a2k}, pri qemu je 1 6 a1 < a2 < a3 <
· · · < a2k = n.
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A1 = f2; 3; 6; 10g A2 = f1; 2; 3; 6; 9; 10g

Sl. 8. Podskupovi skupa [10] sa parnim brojem elemenata i odgovaraju²i obilasci

Kao na slici 8, konstruiximo topovski obilazak PA tako da u PA budu svi:

(a1, 2) (a2, 3) (a2k−1, 2) (n, 3)
↑ ↓ . . . ↑ ↓

(a1, 1), (a2, 2), (a2k−1, 1), (n, 2).

Ostatak ,,popuǌavamo“ onako kako moramo, s tim da korak u levu stranu uvek ima
prednost nad korakom gore ili korakom dole.

Ovim smo dokazali da je broj topovskih obilazaka skupa S isti kao broj
podskupova skupa [n− 1] sa neparnim brojem elemenata, xto je jednako 2n−2. 4
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[4] M. Bóna, A Walk Through Combinatorics, World Scientific Publishing, Singapore, 2006.

[5] Yao Zhang, Combinatorial Problems in Mathematical Competitions, World Scientific Publi-
shing, Singapore, 2011.

[6] http://artofproblemsolving.com/

Matematiqka gimnazija, Kraǉice Natalije 37, Beograd

E-mail : sonja.cukic@mg.edu.rs


