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FUNKCIJE KOJE PREDSTAVǈAJU
PARABOLU ILI HIPERBOLU

Opxta implicitna jednaqina krive drugog reda je

(1) Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

Taj oblik obuhvata sve krive dugog reda (kru¼nicu, elipsu, hiperbolu i para-
bolu; pa qak i pravu).

Jasno je da dimenzioniraǌe jednakosti (1) implicira jednakosti:

[A]D = [B]D = [C]D = L−1, [D]D = [E]D = 1, [F ]D = L.

Svaka kvadratna kriva data pomo²u (1) prividno je zadata pomo²u 6 parametara,
i pomo²u ǌih mo¼emo analizirati ǌene translirane i rotirane oblike. Naime,
vidimo da (1) predstavǉa kvadratnu krivu ako je bar jedan od koeficijenta uz
kvadratne qlanove razliqit od 0, i onda nakon deobe te jednaqine tim koefici-
jentom dobijamo normirani oblik po jednom kvadratnom qlanu, a to znaqi da je
kriva u opxtem sluqaju zadata zapravo pomo²u 5 parametara.

Napomena 1. Qesto se u matematici izra¼avamo kolokvijalno, i to prven-
stveno zbog toga da skratimo iskaz. Tako ²emo za jednaqinu prave re²i da je to
prava, odnosno za jednaqinu krivue ²emo re²i da je to kriva, premda su to dva
bitno razliqita pojma.

Napomena 2. Prava data sa x = x0 (x0 = const), dakle normalna na
apscisnu osu, seqe ravnu krivu F (x, y) = 0 u jednoj taqki, onda i samo onda kada
je ta kriva funkcija. Svakako da x0 mora biti iz domena date funkcije. Kada to
nije, tada se radi o relaciji, ili o ,,dvoznaqnoj funkciji“.

Napomena 3. Ako je A = C 6= 0, B = D = E = 0 i F/A = −r2 < 0, tada
dobijamo jednaqinu centralne kru¼nice u obliku x2+y2 = r2, koja ima sredixte
u koordinatnom poqetku, a r je du¼ina ǌenog polupreqnika.

Daǉe, ako je A = C 6= 0, B = 0 i D2 + E2 > 4AF , tada dobijamo jednaqi-
nu opxte kru¼nice sa sredixtem u S(− D

2A ,− E
2A ) i polupreqnikom du¼ine r =

1
2A

√
D2 + E2 − 4AF . Dimenzije koordinata sredixta su

[− D
2A

]
D

=
[− E

2A

]
D

=
L i [r]D = L, xto smo i oqekivali. Tu jednaqinu obiqno pixemo u obliku
(x− p)2 + (y− q)2 = r2, gde je p = D

2A i q = E
2A . Jednaqina kru¼nice ne odre±uje

funkciju, jer ǌu prava x = x0 seqe u dvema taqkama ili dodiruje u dvostru-
koj taqki levog ili desnog ,,temena“. A ako x0 nije iz domena kru¼nice, dakle
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ako x0 /∈ [p − r, p + r], tada prava x = x0 ,,seqe“ kru¼nicu u dvema konjugovano
kompleksnim taqkama. Jasno je da je grafik kru¼nice unija grafika dveju polu-
kru¼nica, kojima odgovaraju funkcije f1,2(x) = q ±

√
r2 − (x− p)2, gde treba

paziti da se krajevi domena funkcija dodele samo jedanput.

1. Elipsa

Ako je A = b2, B = 0, C = a2, D = E = 0, F = −a2b2, tada dobijamo
jednaqinu elipse

b2x2 + a2y2 = a2b2,

koja tako±e nije funkcija, jer postoji kvadratni qlan zavisno promenǉive y2.
No, on bi tako±e postojao kada bismo tu elipsu translirali ili rotirali, a
to znaqi da bi ona bila preseqena u dvema taqkama pravom koja je normalna na
apscisnu osu na podruqju domena, iz qega sledi da ne postoji funkcija qiji je
grafik ta elipsa.

2. Parabola

Ako je B = C = 0 i E 6= 0, tada iz (1) dobijamo parabolu

y = −A

E
x2 − D

E
x− F

E
,

koja jeste funkcija, ili u uobiqajenom obliku

(2) y = ax2 + bx + c.

Tim oblikom se ne²emo baviti, jer ga detaǉno prouqavamo u drugom razredu
sredǌe xkole, a u tre²em razredu jox dodajemo da je koeficijent a = 1/2p, gde
p predstavǉa udaǉenost ¼i¼e od direktrise. No, ta parabola ²e se degeneri-
sati u pravu kada je a = 0, a to se dobija kada p → ∞, jer je limp→∞ a =
limp→∞ 1/2p = 0, xto znaqi da je udaǉenost ¼i¼e od direktrise beskonaqno
velika, dakle spǉoxtenost parabole je maksimalna.

Me±utim, ako tu parabolu zarotiramo, tada vixe ne postoji funkcija qiji
je ona grafik. Dakle, glavna osa parabole, koja spaja ¼i¼u i teme, nije normalna
na apscisnu osu. Svakako da se sada ta parabola mo¼e predstaviti pomo²u dve
funkcije, koje predstavǉaju ǌenu ,,gorǌu granu“, odnosno ,,doǌu granu“. Na
kraju recimo da je (2) jedini tip funkcije, koji predstavǉa parabolu.

3. Hiperbola

Ako je A = b2, B = 0, C = −a2, D = E = 0, F = a2b2, tada dobijamo
jednaqinu hiperbole

b2x2 − a2y2 = a2b2,

koja tako±e nije funkcija, jer postoji kvadrati qlan zavisne promenǉive y2. No,
u nekim sluqajevima ²e postojati samo linearni qlan zavisne promenǉive, kada
tu hiperbolu transliramo i rotiramo, tako da ona bude preseqena u samo jednoj
taqki pravom koja je normalna na apscisnu osu nad podruqjem domena, iz qega
sledi da postoji funkcija qiji je grafik ta hiperbola.
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Slika 1

Sada ²emo detaǉnije razmotriti sluqaj kada je hiperbola grafik funkcije.
Na slici 1 prikazana je hiperbola, koja je centralno postavǉena u koordinatnom
sistemu. Naime, to je po polo¼aju specijalna, a po obliku je opxta hiperbola.
Ako tu hiperbolu zarotiramo oko centra, tako da jedna asimptota bude normalna
na osu Ox, tada dobijamo grafik funkcije, a sem toga mo¼emo je jox i transli-
rati, pa tada dobijamo najopxtiji sluqaj funkcije koja predstavǉa hiperbolu,
kao na slici 2.

Da bismo ispunili iskazani uslov o egzistenciji funkcije, mora biti C = 0.
Daǉe, ako je α = −A

B , β = −D
B , γ = −F

B , δ = E
B ; tada (1) dobija oblik

(3) y = f(x) =
αx2 + βx + γ

x + δ
.

Jasno je da smo tu uveli oznaku y = f(x), kako ne bi doxlo do zabune ako isto-
vremeno posmatramo i asimptotu y = kx + l.

Odredimo sada dovoǉan uslov da (3) bude hiperbola.

Teorema 1. Funkcija (3) je hiperbola ako i samo ako je

(4) αδ2 + γ 6= βδ.

Dokaz. Zapravo, neophodnost smo ve² izveli, a sada ²emo pokazati i da je
uslov dovoǉan. Naime, iz (4) sledi da je

y =
αx2 + βx + γ

x + δ
=

α((x + δ)2 − δ)2 + β((x + δ)− δ) + γ

x + δ

= α(x + δ)− 2αδ + β +
αδ2 − βδ + γ

x + δ
,

tj.

(5) y = α(x + δ)− αδ + β +
αδ2 − βδ + γ

x + δ
.
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Slika 2

Iz (5) vidimo da ako va¼i (4), tada postoji hiperbola koja je funkcija, jer
postoji vertikalna asimptota, a ako to nije, tada dobijamo pravu.

Na primer, posmatrajmo funkciju y =
x2 − 5x + 6

x− 2
. Ta funkcija nije hiper-

bola, jer je 1 · (−2)2 + 6 = (−5)(−2). Dakle, dobijamo pravu, xto se vidi iz
x2 − 5x + 6

x− 2
=

(x− 2)(x− 3)
x− 2

= x− 3.

Slika 3

Napomena 4. Sada ²emo dati praktiqno uputstvo kako mo¼emo na²i kosu
asimptotu za datu krivu. Najpre moramo re²i da je asimptota prava kojoj se kri-
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va sve vixe pribli¼ava s jedne strane i u beskonaqnosti ga ,,stigne“ (slika 3).
To zapravo znaqi da je limx→∞[f(x)− (kx + l)] = 0, a odatle je

(6) k = lim
x→∞

f(x)
x

i l = lim
x→∞

[f(x)− kx].

Sliqno se postupa u sluqaju kada x → −∞. Dakle, treba ispitati ponaxaǌe
krive i u krajǌe ,,levom“ delu domena.

Svakako, ovo izvo±eǌe pravila za nala¼eǌe kose asimptote nije u duhu stro-
ge matematiqke analize, ali je za oqekivati da je prihvatǉivo na elementarnom
nivou. Sliqno se definixu vertikalna i horizontalna asimptota.

Pomo²u formula (6) na±imo kosu asimptotu hiperbole (3). Ako (3) uvrstimo
u prvu od formula (6), dobijamo

k = lim
x→∞

f(x)
x

= lim
x→∞

αx2 + βx + γ

x2 + δx
= α.

Daǉe, iz druge od relacija (6) sledi

l = lim
x→∞

[f(x)− kx] = lim
x→∞

(αx2 + βx + γ

x + δ
− αx

)
= lim

x→∞
(β − αδ)x + γ

x + δ
= β − αδ.

Dakle, kosa asimptota ima jednaqinu y = αx+(β−αδ). Isti rezultat se dobija
i kada x → −∞.

Mogli bismo napraviti sliqnu analizu jednaqina za opxte sluqajeve elipse,
hiperbole i parabole kada su te krive translirane, ali ne i rotirane, jer je to
elementarno gradivo.

4. Jedna specijalna klasa hiperbola

Sada ²emo posmatrati jednu specijalnu klasu hiperbola, koja se qesto pri-
meǌuje (fizika, biologija, hemija, ekonometrija, . . . ). Radi se o krivoj poznatoj
uqenicima jox iz prvog razreda sredǌe xkole (slika 4), koja ima jednaqinu u
obliku

(7) y =
β

x
.

Jasno je da je u primenama β obiqno imenovani broj.

Svakako je i ovaj sluqaj ukǉuqen u (1), ako je A = C = D = E = 0, B = 1,
F = −β.

Ako je β > 0, tada hiperbola ima za asimptote koordinatne ose, a ǌena
osa koja sadr¼i ¼i¼e je simetrala prvog i tre²eg kvadranta, qija je jednaqina
y = x. Da bismo dobili koordinate temena hiperbole, treba da reximo sistem
jednaqina y = β/x i y = x. Nakon tog postupka imamo da su temena T1(

√
β,
√

β)
i T2(−

√
β,−√β). Na osnovu ovih vrednosti i definicije hiperbole dobijamo

da su ¼i¼e F1,2(±
√

2β,±√2β). Ovde smo iskoristili svojstvo hiperbole, da su
taqke F1,2, A, B,C, D na istoj kru¼nici, kojoj je sredixte u centru hiperbole, u
ovom sluqaju u koordinatnom poqetku.
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Slika 4

Sliqni rezultati se dobijaju u sluqaju da je β < 0.
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