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RAMANU�ANOV DOKAZ BERTRANOVOG POSTULATA

1. Uvod

Godine 1845, francuski matematiqar ´ozef L. F. Bertran (Joseph L. F.
Bertand, 1822–1900), u radu o permutacijama, napisao je slede²e: ,,za svaki
prirodan broj n > 4 postoji prost broj p koji je ve�i od n i maǌi od 2n−2“.
Ovo tvr±eǌe Bertran je proverio za n = 4, 5, . . . , 3 · 106, ali nije uspeo da ga
doka¼e. Kasnije je ono dobilo naziv Bertranov postulat. Mada se sada ve²
150 godina zna da je to tvr±eǌe taqno, ovaj naziv se i daǉe koristi. Danas
se qex²e navodi nexto slabiji problem: ,,za svaki prirodan broj n postoji
prost broj p ∈ (n, 2n]“.

Pafnutij ǈvoviq Qebixov (Pafnuti½ L~voviq Qebixev, 1821–1894), otac
ruske matematiqke xkole, dokazao je Bertranovu hipotezu sedam godina kasni-
je. U tom ciǉu je uveo posebne funkcije, koje su kasnije postale standardne u
analitiqkoj teoriji brojeva.

Jednostavniji dokaz je 1919. godine objavio indijski matematiqar-samouk
Srinivasa Ajangar Ramanu­an (Srinivasa Aiyangar Ramanujan, 1887–1920), vide-
ti qlanak [4]. Taj prerano preminuli matematiqki genije jox je u detiǌstvu
pokazivao veliki matematiqki talenat, ali je bio ,,otkriven“ tek 1910. godine.
Na Hardijevo (Godfrey Harold Hardy, 1877–1947) nagovaraǌe, doxao je 1914.
godine u Kembri­, gde su mu posle dve godine dodelili doktorat. Uprkos po-
maǌkaǌu matematiqke preciznosti, xto je bila posledica neformalnog obrazo-
vaǌa, dobio je zavidne rezultate u oblasti specijalnih funkcija i ǌihovoj vezi
s teorijom brojeva, koji i danas potresaju matematiqki svet. Kako je govorio
Hardi, Ramanu­an je do svojih otkri²a doxao kombinacijom intuicije i neob-
jaxǌivog naqina zakǉuqivaǌa, sposobnox²u koja se mo¼e meriti s Ojlerovom.
Zbog vrlo slabog zdravǉa, vratio se u Indiju, gde je ubrzo i umro.

Novi dokaz Bertranovog postulata je 1932. godine dao ma±arski matema-
tiqar Paul Erdex (Paul Erdös, 1913–1996), xto mu je bio prvi nauqni rezultat.
ǋegov dokaz ne koristi Qebixovǉeve funkcije i na mnogim mestima, posebno u
vezi sa binomnim koeficijentima, podse²a na Ramanu­anov dokaz. Erdexov dokaz
je danas verovatno i najpoznatiji, najvixe zaslugom kǌige [1].
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Me±utim, pozadina Qebixovǉevog ili Ramanu­anovog dokaza boǉe se sla¼e
s klasiqnim metodama analitiqke teorije brojeva, i zato je on primereniji kao
uvod u tu oblast matematike. Kako je dokaz relativno jednostavan, ovaj tekst se
mo¼e koristiti i za rad na matematiqkoj grupi u gimnaziji.

2. Qebixovǉeve funkcije

Konstruiximo niz prirodnih brojeva n1, n2, . . . na slede²i naqin: uzmimo
n1 = 4 i neka je za k > 2, nk najve²i prost broj koji je maǌi od 2nk−1 − 2.
Nekoliko prvih qlanova tog niza su

4, 5, 7, 11, 19, 31, 59, 113, 223, 443, 883, 1759, 3511, 7019, . . .

Bertranov postulat je oqigledno ekvivalentan tvr±eǌu da je gorǌi niz strogo
rastu²i. Oznaqimo sa π(x) broj prostih brojeva koji nisu ve²i od realnog
broja x > 2. Primetimo da je kodomen funkcije π skup prirodnih brojeva. Ako
poka¼emo da je π(x)−π(x/2) > 1 za x > 8, Bertanov postulat je dokazan. Zaxto?
Ako je navedeno taqno, onda za svaki prirodan broj n > 4 interval (n, 2n] sadr¼i
dva prosta broja. Kako brojevi 2n i 2n−2 nisu prosti, onda interval (n, 2n−2)
sadr¼i bar jedan prost broj, xto je upravo sadr¼aj Bertranovog postulata. Zbog
napred navedenog, dovoǉno je proveriti da je π(x)− π(x/2) > 1 za x > 2000.

Umesto sa funkcijom π(x), pogodnije je raditi s Qebixovǉevim funkcijama.
Naime, Qebixov je za dokaz Bertranovog postulata uveo slede²e funkcije ϑ(x)
i ψ(x):

ϑ(x) =
∑

p6x

log p,

ψ(x) = ϑ(x) + ϑ(x1/2) + ϑ(x1/3) + · · · ,(1)

gde su p prosti brojevi. Za x < 2 definixemo ϑ(x) = 0, pa je zbir (1) ustvari
konaqan. Oqigledno je ϑ(x) 6 ψ(x). Funkciju ψ mo¼emo da izrazimo i drugaqije.
Neka je Λ(n) funkcija qija je vrednost razliqita od nule samo kada je n stepen
nekog prostog broja p, u kom sluqaju je jednaka log p. Pritom je

(2) ψ(x) =
∑

p6x

log p +
∑

p26x

log p +
∑

p36x

log p + · · · =
∑

n6x

Λ(n).

Funkcije π, ϑ i ψ su osnovne funkcije analitiqke teorije brojeva, a Λ se naziva
fon Mangoltovom funkcijom. Ispostavǉa se da je najjednostavnije raditi
s funkcijom ψ. Poqetna ideja je da razliku π(x) − π(x/2) izrazimo pomo²u
funkcije ϑ. Kako je izraz ϑ(x)−ϑ(x/2) jednak zbiru logaritama prostih brojeva
iz intervala (x/2, x], va¼i jednostavna procena

(3) π(x)− π
(x

2

)
> 1

log x

(
ϑ(x)− ϑ

(x

2

))
.

Kako prema (1) va¼i ψ(
√

x) = ϑ(x1/2) + ϑ(x1/4) + · · · , imamo

ψ(x)− 2ψ(
√

x) = ϑ(x)− ϑ(x1/2) + ϑ(x1/3)∓ · · · .
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Desna strana prethodne jednakosti nije ve²a od ϑ(x), pa je ϑ rastu²a funkcija.
Uzimaju²i u obzir da je ϑ(x/2) 6 ψ(x/2), dobijamo

(4) ϑ(x)− ϑ
(x

2

)
> ψ(x)− ψ

(x

2

)
− 2ψ(

√
x).

Kombinuju²i nejednakosti (3) i (4), imamo da je

(5) π(x)− π
(x

2

)
> 1

log x

(
ψ(x)− ψ

(x

2

)
− 2ψ(

√
x)

)
.

Suxtina Ramanu­anovog pristupa dokazu Bertranovog postulata je jednostavnija
procena desne strane nejednakosti (5).

3. Ramanu
anova ideja

Podsetimo se da binomni koeficijenti
(

n

m

)
=

n!
m! (n−m)!

imaju svojstvo

simetrije,
(

n

m

)
=

(
n

n−m

)
, kao i da oni uqestvuju u binomnoj formuli

(6) (x + y)n =
(

n

0

)
xn +

(
n

1

)
xn−1y + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn.

Lako je videti da je, za dato n, najve²i binomni koeficijent jednak
(

n

bn/2c
)

,
gde je bxc oznaka za celi deo nenegativnog broja x.

Ramanu­an je za x > 0 uveo funkciju

R(x) =
bxc!

bx/2c!2 .

Prema osnovnom stavu aritmetike sledi da je log n =
∑

d|n Λ(d). Dobijamo da je

log bxc! =
∑

n6x

log n =
∑

n6x

∑

d|n
Λ(d) = ψ(x) + ψ

(x

2

)
+ ψ

(x

3

)
+ · · · ,

gde pri dokazu tre²e jednakosti, osim relacije (2), koristimo i da je broj
prirodnih brojeva izme±u 1 i x, koji su deǉivi sa d, jednak bx/dc. Zato je

(7) log R(x) = ψ(x)− ψ
(x

2

)
+ ψ

(x

3

)
∓ · · · .

Sada se mo¼e naslutiti kako treba tu jednakost iskoristiti u nejednakosti (5).
Kako je ψ rastu²a funkcija, dobijamo da je

ψ(x)− ψ
(x

2

)
6 log R(x) 6 ψ(x)− ψ

(x

2

)
+ ψ

(x

3

)
,

xto znaqi da je ψ(x)− ψ(x/2) > log R(x)− ψ(x/3) i

ψ(x) =
(
ψ(x)− ψ

(x

2

))
+

(
ψ

(x

2

)
− ψ

(x

4

))
+

(
ψ

(x

4

)
− ψ

(x

8

))
+ · · ·

6 log
(
R(x)R

(x

2

)
R

(x

4

)
R

(x

8

)
· · ·

)
.
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Oznaqimo sa R(x) proizvod u posledǌoj zagradi. Kada u toj nejednakosti za-
menimo x/3 i iskoristimo prethodnu nejednakost, zajedno s (5) konaqno dobijamo

(8) π(x)− π
(x

2

)
> 1

log x

(
log R(x)− log R

(x

3

)
− 2 log R(

√
x)

)
.

Time smo zadatak sveli na tra¼eǌe pogodne doǌe i gorǌe granice za funkciju
R(x). Ramanu­an je na tom mestu iskoristio va¼nu, ali neelementarnu aproksi-
maciju (Stirlingovu formulu), prema kojoj je log R(x) < 3

4 x i log R(x) > 2
3 x za

x > 300. Zakǉuqio je da tada va¼i

π(x)− π
(x

2

)
>

1
log x

(x

6
− 3

√
x
)
,

jer je R(x) < e3x/2. Kako je za x > 400 desna strana ve²a od 1, to je Bertranov
postulat dokazan, doduxe po cenu primene Stirlingove formule. U qlanku [3]
je dokazano da se Ramanu­anove ocene mogu zameniti slabijim, ali elementarnim
ocenama. To ²emo uqiniti u slede²em odeǉku.

Na ovom mestu treba pomenuti da je Ramanu­an na kraju qlanka, bez obraz-
lo¼eǌa, naveo da je π(x)−π(x/2) > 1, 2, 3, 4, 5, . . . za sve x > 2, 11, 17, 29, 41, . . . .
Ta napomena je inspirisala matematiqare da uvedu slede²u definiciju: za
proizvoǉan prirodan broj n, neka Rn oznaqava najmaǌi prirodan broj, takav
da za sve x > Rn va�i π(x) − π(x/2) > n. Naravno, takav broj uvek postoji
jer je funkcija π(x) − π(x/2) neograniqena. Jednostavno je proveriti da prvih
pet Ramanu­anovih brojeva zadovoǉavaju uslove ove definicije. Primetimo da
su svi oni prosti brojevi. Po definiciji, za svako x < Rn, interval (x/2, x]
sadr¼i najvixe n − 1 prost broj. Zato interval (Rn/2, Rn] sadr¼i taqno n
prostih brojeva, xto znaqi da je Rn prost broj. Taj zakǉuqak opravdava termin
Ramanu
anovi prosti brojeva.

4. Granice za funkciju R(x)

Funkciju R(x) ²emo za x > 3 posmatrati u zavisnosti od parnosti broja bxc.
Nije texko izraqunati da je R(x) =

(
2k

k

)
za bxc = 2k i R(x) =

(
2k + 1

k

)
(k +1)

za bxc = 2k + 1. Po binomnoj formuli (6) za x = y = 1 sledi nejednakost(
n

m

)
6 2n za sve 0 6 m 6 n. Ako je n neparan, va¼i

(
n

bn/2c
)

=
(

n

bn/2 + 1c
)

.

Tako u tom sluqaju imamo dva najve²a binomna koeficijenta. Zato za neparne n

va¼i nejednakost
(

n

bn/2c
)

6 2n−1. Kako je
(

n

0

)
+

(
n

n

)
,

(
n

1

)
, . . . ,

(
n

n− 1

)
6(

n

bn/2c
)

, sledi

2n

n
6

(
n

bn/2c
)

.

Pomo²u tih elementarnih nejednakosti dobijamo da je
22k

2k
6 R(x) 6 22k za bxc =

2k i (k + 1)
22k+1

2k + 1
6 R(x) 6 (k + 1)22k za bxc = 2k + 1. Kombinuju²i sve ove
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nejednakosti, dobijamo

2bxc

bxc = min
{2bxc

bxc ,
bxc+ 1
2bxc 2bxc

}
6 R(x)

6 max
{

2bxc,
bxc+ 1

2
2bxc−1

}
= (bxc+ 1) 2bxc−2.

Ako zamenimo bxc sa x i iskoristimo da je x− 1 < bxc 6 x, dobijamo

(9)
2x−1

x
6 R(x) 6 (x + 1)2x−2.

Jednostavno se proverava da va¼i (x + 1)2x−2 6 x · 2x−1 i x/2 < (3/2)x/2. Sada
je x · 2x−1 < 6x/2 i odatle R(x) < 6x/2. Odatle dobijamo

(10) R(x) < 6x/2+x/4+x/8+··· 6 6x.

Sada je jasno da mo¼emo u (8) iskoristiti (10) i levu nejednakost u (9).

5. Dokaz

Primeǌuju²i ocene iz prethodnog odeǉka na relaciju (8), dobijamo

π(x)− π
(x

2

)
>

1
log x

(x

3
log

4
3
− 2

√
x log 6− log 2x

)

za x > 3. Oznaqimo sa f(x) funkciju u posledǌoj zagradi. Kako za x > 2 va¼i√
x 6 x/

√
2 < 5

7 x i log x < x, pomo²u ­epnog kalkulatora dobijamo

f
(
103x

)
=

(103

3
log

4
3

)
x− (20

√
10 log 6)

√
x− log (2 · 103)− log x

≈ 95,894x− 113,321
√

x− 7,601− log x > 13,91x− 7,601

i s tim

π(103x)− π
(103x

2

)
>

13,91x− 7,601
x + 6,908

.

Tako je π(x) − π(x/2) > 1 za x > 2000, xto pokazuje ispravnost Bertranovog
postulata.

Verovatno je mnoge zbunila ,,nerigorozna“ upotreba kalkulatora u prethod-
nom izvo±eǌu. I s pravom, jer matematiqki dokaz mora biti nezavisan od raqun-
skih pomagala, mada nam ona qesto ukazuju na pravi put. Zato za kraj ovog odeǉka
dajemo strogi dokaz, tako xto ²emo iskoristiti slede²i poznati stepeni red

(11) log (1 + x) = x− x2

2
+

x3

3
− x4

4
± · · · ,

koji konvergira za x ∈ (−1, 1]. Pomo²u smene x 7→ 1
x
− 1 transformiximo (11)

u jednakost

log x =
(
1− 1

x

)
+

1
2

(
1− 1

x

)2

+
1
3

(
1− 1

x

)3

+ · · · ,
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koja va¼i za x > 1/2. Iskoristimo taj red za dobijaǌe gorǌe i doǌe granice
za logaritam. Za doǌu granicu uzmimo prva tri qlana reda, a za gorǌu ostale
qlanove zamenimo pogodnim geometrijskim redom. Dobijamo

(x− 1)(11x2 − 7x + 2)
6x3

< log x <
(x− 1)(3x3 + 13x2 − 5x + 1)

12x3
.

Te ocene nam daju log (4/3) > 55/192, log 6 = log 2+log 3 < 4753/2592, log 1000 =
3(log 2 + log 5) < 30007/4000 i log 2000 = 4 log 2 + 3 log 5 < 24599/3000. Neka je
x > 2. Ako iskoristimo da je

√
10 < 16/5, log x < x i

√
x < 5x/7, dobijamo

f(103x) >
6907
648

x− 24599
3000

.

Odatle sledi

π(103x)− π
(103x

2

)
>

4
81

863375x− 664173
4000x + 30007

,

xto ponovo daje π(x)− π(x/2) > 1 za x > 2000.

6. Za kraj

Bertranov postulat spada me±u probleme teorije brojeva u kojima se ispitu-
ju gorǌe granice tzv. praznina izme�u prostih brojeva, tj. razlika uzastop-
nih prostih brojeva. Neka su p1, p2, . . . uzastopni prosti brojevi. Kako nam
Bertranov postulat govori u broju prostih brojeva u intervalu (pn, 2pn − 2),
sledi da je pn+1 − pn < pn − 2. Postoje i jaqe pretpostavke, kakve su, na
primer, pretpostavka Andrike pn+1 − pn < 1 + 2

√
pn i Kramerova pret-

postavka pn+1 − pn < C log2 pn za neko konstantno C > 0. Me±utim, izgleda da
oru±a savremene matematike nisu dorasla tim izazovima. Tako jedan od najve²ih
nerexenih problema matematike, slavna Rimanova hipoteza u ovom primeru
obezbe±uje samo da va¼i pn+1 − pn < c

√
pn log pn. Baker, Harman i Pintz su

2001. godine dokazali da je ε = 0,025. Videti kǌigu [2, str. 32] u kojoj qitalac
mo¼e na²i vixe srodnih problema.
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